Hierarchical Gaussian Processes with Wasserstein-2 Kernels
Stacking Gaussian Processes severely diminishes the model's ability to detect outliers, which when combined with non-zero mean functions, further extrapolates low non-parametric variance to low training data density regions. We propose a hybrid kernel inspired from Varifold theory, operating in...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-02 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Stacking Gaussian Processes severely diminishes the model's ability to detect outliers, which when combined with non-zero mean functions, further extrapolates low non-parametric variance to low training data density regions. We propose a hybrid kernel inspired from Varifold theory, operating in both Euclidean and Wasserstein space. We posit that directly taking into account the variance in the computation of Wasserstein-2 distances is of key importance towards maintaining outlier status throughout the hierarchy. We show improved performance on medium and large scale datasets and enhanced out-of-distribution detection on both toy and real data. |
---|---|
ISSN: | 2331-8422 |