L1-Norm Tucker Tensor Decomposition
Tucker decomposition is a standard multi-way generalization of Principal-Component Analysis (PCA), appropriate for processing tensor data. Similar to PCA, Tucker decomposition has been shown to be sensitive against faulty data, due to its L2-norm-based formulation which places squared emphasis to pe...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.178454-178465 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 178465 |
---|---|
container_issue | |
container_start_page | 178454 |
container_title | IEEE access |
container_volume | 7 |
creator | Chachlakis, Dimitris G. Prater-Bennette, Ashley Markopoulos, Panos P. |
description | Tucker decomposition is a standard multi-way generalization of Principal-Component Analysis (PCA), appropriate for processing tensor data. Similar to PCA, Tucker decomposition has been shown to be sensitive against faulty data, due to its L2-norm-based formulation which places squared emphasis to peripheral/outlying entries. In this work, we explore L1-Tucker, an L1-norm based reformulation of Tucker decomposition, and present two algorithms for its solution, namely L1-norm Higher-Order Singular Value Decomposition (L1-HOSVD) and L1-norm Higher-Order Orthogonal Iterations (L1-HOOI). The proposed algorithms are accompanied by complexity and convergence analysis. Our numerical studies on tensor reconstruction and classification corroborate that L1-Tucker decomposition, implemented by means of the proposed algorithms, attains similar performance to standard Tucker when the processed data are corruption-free, while it exhibits sturdy resistance against heavily corrupted entries. |
doi_str_mv | 10.1109/ACCESS.2019.2955134 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2455635119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8910610</ieee_id><doaj_id>oai_doaj_org_article_0f237e193f784f7eb3ba7c81adfb6e21</doaj_id><sourcerecordid>2455635119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-adc83dd35d19e480f67ad60431e99adda955b800a4272ae74bd697a02db825f23</originalsourceid><addsrcrecordid>eNpNUE1PAjEUbIwmEuQXcCHhvNjX7x7JikpC9ACem-62axaBYrsc_PcWlxDf5b1MZuZNBqEx4BkA1o_zslys1zOCQc-I5hwou0EDAkIXlFNx----R6OUtjiPyhCXAzRdQfEW4n6yOdVfPk42_pBCnDz5OuyPIbVdGw4P6K6xu-RHlz1EH8-LTflarN5fluV8VdQMq66wrlbUOcodaM8UboS0TmBGwWttnbM5W6UwtoxIYr1klRNaWkxcpQhvCB2iZe_rgt2aY2z3Nv6YYFvzB4T4aWzs2nrnDc506UHTRirWSF_RyspagXVNJTyB7DXtvY4xfJ986sw2nOIhxzeEcS4oh6weItqz6hhSir65fgVszuWavlxzLtdcys2qca9qvfdXhdKABWD6C1tFc0w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455635119</pqid></control><display><type>article</type><title>L1-Norm Tucker Tensor Decomposition</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chachlakis, Dimitris G. ; Prater-Bennette, Ashley ; Markopoulos, Panos P.</creator><creatorcontrib>Chachlakis, Dimitris G. ; Prater-Bennette, Ashley ; Markopoulos, Panos P.</creatorcontrib><description>Tucker decomposition is a standard multi-way generalization of Principal-Component Analysis (PCA), appropriate for processing tensor data. Similar to PCA, Tucker decomposition has been shown to be sensitive against faulty data, due to its L2-norm-based formulation which places squared emphasis to peripheral/outlying entries. In this work, we explore L1-Tucker, an L1-norm based reformulation of Tucker decomposition, and present two algorithms for its solution, namely L1-norm Higher-Order Singular Value Decomposition (L1-HOSVD) and L1-norm Higher-Order Orthogonal Iterations (L1-HOOI). The proposed algorithms are accompanied by complexity and convergence analysis. Our numerical studies on tensor reconstruction and classification corroborate that L1-Tucker decomposition, implemented by means of the proposed algorithms, attains similar performance to standard Tucker when the processed data are corruption-free, while it exhibits sturdy resistance against heavily corrupted entries.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2955134</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Arrays ; Data analysis ; Decomposition ; L1-norm ; Mathematical analysis ; Matrix decomposition ; multi-modal data ; Principal component analysis ; Resistance ; Singular value decomposition ; tensor decomposition ; Tensors ; Tucker</subject><ispartof>IEEE access, 2019, Vol.7, p.178454-178465</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-adc83dd35d19e480f67ad60431e99adda955b800a4272ae74bd697a02db825f23</citedby><cites>FETCH-LOGICAL-c408t-adc83dd35d19e480f67ad60431e99adda955b800a4272ae74bd697a02db825f23</cites><orcidid>0000-0002-6464-0723 ; 0000-0001-9686-779X ; 0000-0002-4272-423X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8910610$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,2098,4012,27620,27910,27911,27912,54920</link.rule.ids></links><search><creatorcontrib>Chachlakis, Dimitris G.</creatorcontrib><creatorcontrib>Prater-Bennette, Ashley</creatorcontrib><creatorcontrib>Markopoulos, Panos P.</creatorcontrib><title>L1-Norm Tucker Tensor Decomposition</title><title>IEEE access</title><addtitle>Access</addtitle><description>Tucker decomposition is a standard multi-way generalization of Principal-Component Analysis (PCA), appropriate for processing tensor data. Similar to PCA, Tucker decomposition has been shown to be sensitive against faulty data, due to its L2-norm-based formulation which places squared emphasis to peripheral/outlying entries. In this work, we explore L1-Tucker, an L1-norm based reformulation of Tucker decomposition, and present two algorithms for its solution, namely L1-norm Higher-Order Singular Value Decomposition (L1-HOSVD) and L1-norm Higher-Order Orthogonal Iterations (L1-HOOI). The proposed algorithms are accompanied by complexity and convergence analysis. Our numerical studies on tensor reconstruction and classification corroborate that L1-Tucker decomposition, implemented by means of the proposed algorithms, attains similar performance to standard Tucker when the processed data are corruption-free, while it exhibits sturdy resistance against heavily corrupted entries.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Arrays</subject><subject>Data analysis</subject><subject>Decomposition</subject><subject>L1-norm</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>multi-modal data</subject><subject>Principal component analysis</subject><subject>Resistance</subject><subject>Singular value decomposition</subject><subject>tensor decomposition</subject><subject>Tensors</subject><subject>Tucker</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PAjEUbIwmEuQXcCHhvNjX7x7JikpC9ACem-62axaBYrsc_PcWlxDf5b1MZuZNBqEx4BkA1o_zslys1zOCQc-I5hwou0EDAkIXlFNx----R6OUtjiPyhCXAzRdQfEW4n6yOdVfPk42_pBCnDz5OuyPIbVdGw4P6K6xu-RHlz1EH8-LTflarN5fluV8VdQMq66wrlbUOcodaM8UboS0TmBGwWttnbM5W6UwtoxIYr1klRNaWkxcpQhvCB2iZe_rgt2aY2z3Nv6YYFvzB4T4aWzs2nrnDc506UHTRirWSF_RyspagXVNJTyB7DXtvY4xfJ986sw2nOIhxzeEcS4oh6weItqz6hhSir65fgVszuWavlxzLtdcys2qca9qvfdXhdKABWD6C1tFc0w</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Chachlakis, Dimitris G.</creator><creator>Prater-Bennette, Ashley</creator><creator>Markopoulos, Panos P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6464-0723</orcidid><orcidid>https://orcid.org/0000-0001-9686-779X</orcidid><orcidid>https://orcid.org/0000-0002-4272-423X</orcidid></search><sort><creationdate>2019</creationdate><title>L1-Norm Tucker Tensor Decomposition</title><author>Chachlakis, Dimitris G. ; Prater-Bennette, Ashley ; Markopoulos, Panos P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-adc83dd35d19e480f67ad60431e99adda955b800a4272ae74bd697a02db825f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Arrays</topic><topic>Data analysis</topic><topic>Decomposition</topic><topic>L1-norm</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>multi-modal data</topic><topic>Principal component analysis</topic><topic>Resistance</topic><topic>Singular value decomposition</topic><topic>tensor decomposition</topic><topic>Tensors</topic><topic>Tucker</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chachlakis, Dimitris G.</creatorcontrib><creatorcontrib>Prater-Bennette, Ashley</creatorcontrib><creatorcontrib>Markopoulos, Panos P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chachlakis, Dimitris G.</au><au>Prater-Bennette, Ashley</au><au>Markopoulos, Panos P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>L1-Norm Tucker Tensor Decomposition</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>178454</spage><epage>178465</epage><pages>178454-178465</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Tucker decomposition is a standard multi-way generalization of Principal-Component Analysis (PCA), appropriate for processing tensor data. Similar to PCA, Tucker decomposition has been shown to be sensitive against faulty data, due to its L2-norm-based formulation which places squared emphasis to peripheral/outlying entries. In this work, we explore L1-Tucker, an L1-norm based reformulation of Tucker decomposition, and present two algorithms for its solution, namely L1-norm Higher-Order Singular Value Decomposition (L1-HOSVD) and L1-norm Higher-Order Orthogonal Iterations (L1-HOOI). The proposed algorithms are accompanied by complexity and convergence analysis. Our numerical studies on tensor reconstruction and classification corroborate that L1-Tucker decomposition, implemented by means of the proposed algorithms, attains similar performance to standard Tucker when the processed data are corruption-free, while it exhibits sturdy resistance against heavily corrupted entries.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2955134</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6464-0723</orcidid><orcidid>https://orcid.org/0000-0001-9686-779X</orcidid><orcidid>https://orcid.org/0000-0002-4272-423X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.178454-178465 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2455635119 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Approximation algorithms Arrays Data analysis Decomposition L1-norm Mathematical analysis Matrix decomposition multi-modal data Principal component analysis Resistance Singular value decomposition tensor decomposition Tensors Tucker |
title | L1-Norm Tucker Tensor Decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A52%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=L1-Norm%20Tucker%20Tensor%20Decomposition&rft.jtitle=IEEE%20access&rft.au=Chachlakis,%20Dimitris%20G.&rft.date=2019&rft.volume=7&rft.spage=178454&rft.epage=178465&rft.pages=178454-178465&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2955134&rft_dat=%3Cproquest_cross%3E2455635119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455635119&rft_id=info:pmid/&rft_ieee_id=8910610&rft_doaj_id=oai_doaj_org_article_0f237e193f784f7eb3ba7c81adfb6e21&rfr_iscdi=true |