L1-Norm Tucker Tensor Decomposition

Tucker decomposition is a standard multi-way generalization of Principal-Component Analysis (PCA), appropriate for processing tensor data. Similar to PCA, Tucker decomposition has been shown to be sensitive against faulty data, due to its L2-norm-based formulation which places squared emphasis to pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.178454-178465
Hauptverfasser: Chachlakis, Dimitris G., Prater-Bennette, Ashley, Markopoulos, Panos P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tucker decomposition is a standard multi-way generalization of Principal-Component Analysis (PCA), appropriate for processing tensor data. Similar to PCA, Tucker decomposition has been shown to be sensitive against faulty data, due to its L2-norm-based formulation which places squared emphasis to peripheral/outlying entries. In this work, we explore L1-Tucker, an L1-norm based reformulation of Tucker decomposition, and present two algorithms for its solution, namely L1-norm Higher-Order Singular Value Decomposition (L1-HOSVD) and L1-norm Higher-Order Orthogonal Iterations (L1-HOOI). The proposed algorithms are accompanied by complexity and convergence analysis. Our numerical studies on tensor reconstruction and classification corroborate that L1-Tucker decomposition, implemented by means of the proposed algorithms, attains similar performance to standard Tucker when the processed data are corruption-free, while it exhibits sturdy resistance against heavily corrupted entries.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2955134