Girth Analysis of Tanner's (3, 17)-Regular QC-LDPC Codes Based on Euclidean Division Algorithm

In this paper, the girth distribution of the Tanner's (3, 17)-regular quasi-cyclic LDPC (QC-LDPC) codes with code length 17p is determined, where p is a prime and p \equiv 1~(\bmod ~51) . By analyzing their cycle structure, five equivalent types of cycles with length not more than 10 are o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.94917-94930
Hauptverfasser: Xu, Hengzhou, Duan, Yake, Miao, Xiaoxiao, Zhu, Hai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94930
container_issue
container_start_page 94917
container_title IEEE access
container_volume 7
creator Xu, Hengzhou
Duan, Yake
Miao, Xiaoxiao
Zhu, Hai
description In this paper, the girth distribution of the Tanner's (3, 17)-regular quasi-cyclic LDPC (QC-LDPC) codes with code length 17p is determined, where p is a prime and p \equiv 1~(\bmod ~51) . By analyzing their cycle structure, five equivalent types of cycles with length not more than 10 are obtained. The existence of these five types of cycles is transmitted into polynomial equations in a 51st unit root of the prime field \mathbb {F}_{p} . By using the Euclidean division algorithm to check the existence of solutions for such polynomial equations, the girth values of the Tanner's (3, 17)-regular QC-LDPC codes are obtained.
doi_str_mv 10.1109/ACCESS.2019.2929587
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2455616766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8765603</ieee_id><doaj_id>oai_doaj_org_article_94185c07633247ff8a91d2071a5dadd1</doaj_id><sourcerecordid>2455616766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-eca5aaa9fef576c6f829612250ce74e7117df1b8a16a74b21d3301d61ea367683</originalsourceid><addsrcrecordid>eNpNUVtLHDEUHoqFivoLfAn0oQqdbU4yuT2u41aFhV60rw3HSbJmGSeazBb89x0dEc_LOXx8FzhfVR0DXQBQ823Ztqvr6wWjYBbMMCO0-lDtM5Cm5oLLvXf3p-qolC2dRk-QUPvV34uYxzuyHLB_KrGQFMgNDoPPXwo54V8JqNP6t9_seszkV1uvz3-2pE3OF3KGxTuSBrLadX10HgdyHv_FEido2W9SjuPd_WH1MWBf_NHrPqj-fF_dtJf1-sfFVbtc111D9Vj7DgUimuCDULKTQTMjgTFBO68arwCUC3CrESSq5paB45yCk-CRSyU1P6iuZl-XcGsfcrzH_GQTRvsCpLyxmMfY9d6aBrToqJKcs0aFoNGAY1QBCofOweT1efZ6yOlx58tot2mXpwcVyxohJEyJcmLxmdXlVEr24S0VqH3uxc692Ode7Gsvk-p4VkXv_ZtCKykk5fw_WFKFgA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455616766</pqid></control><display><type>article</type><title>Girth Analysis of Tanner's (3, 17)-Regular QC-LDPC Codes Based on Euclidean Division Algorithm</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Xu, Hengzhou ; Duan, Yake ; Miao, Xiaoxiao ; Zhu, Hai</creator><creatorcontrib>Xu, Hengzhou ; Duan, Yake ; Miao, Xiaoxiao ; Zhu, Hai</creatorcontrib><description><![CDATA[In this paper, the girth distribution of the Tanner's (3, 17)-regular quasi-cyclic LDPC (QC-LDPC) codes with code length <inline-formula> <tex-math notation="LaTeX">17p </tex-math></inline-formula> is determined, where <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> is a prime and <inline-formula> <tex-math notation="LaTeX">p \equiv 1~(\bmod ~51) </tex-math></inline-formula>. By analyzing their cycle structure, five equivalent types of cycles with length not more than 10 are obtained. The existence of these five types of cycles is transmitted into polynomial equations in a 51st unit root of the prime field <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{p} </tex-math></inline-formula>. By using the Euclidean division algorithm to check the existence of solutions for such polynomial equations, the girth values of the Tanner's (3, 17)-regular QC-LDPC codes are obtained.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2929587</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Codes ; Encoding ; Euclidean division algorithm ; girth ; Hardware ; Indexes ; LDPC codes ; Low density parity check codes ; Mathematical analysis ; Parity check codes ; Polynomials ; prime field ; quasi-cyclic (QC) ; Technological innovation ; Training</subject><ispartof>IEEE access, 2019, Vol.7, p.94917-94930</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-eca5aaa9fef576c6f829612250ce74e7117df1b8a16a74b21d3301d61ea367683</citedby><cites>FETCH-LOGICAL-c408t-eca5aaa9fef576c6f829612250ce74e7117df1b8a16a74b21d3301d61ea367683</cites><orcidid>0000-0001-9403-4460</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8765603$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4014,27624,27914,27915,27916,54924</link.rule.ids></links><search><creatorcontrib>Xu, Hengzhou</creatorcontrib><creatorcontrib>Duan, Yake</creatorcontrib><creatorcontrib>Miao, Xiaoxiao</creatorcontrib><creatorcontrib>Zhu, Hai</creatorcontrib><title>Girth Analysis of Tanner's (3, 17)-Regular QC-LDPC Codes Based on Euclidean Division Algorithm</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[In this paper, the girth distribution of the Tanner's (3, 17)-regular quasi-cyclic LDPC (QC-LDPC) codes with code length <inline-formula> <tex-math notation="LaTeX">17p </tex-math></inline-formula> is determined, where <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> is a prime and <inline-formula> <tex-math notation="LaTeX">p \equiv 1~(\bmod ~51) </tex-math></inline-formula>. By analyzing their cycle structure, five equivalent types of cycles with length not more than 10 are obtained. The existence of these five types of cycles is transmitted into polynomial equations in a 51st unit root of the prime field <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{p} </tex-math></inline-formula>. By using the Euclidean division algorithm to check the existence of solutions for such polynomial equations, the girth values of the Tanner's (3, 17)-regular QC-LDPC codes are obtained.]]></description><subject>Algorithms</subject><subject>Codes</subject><subject>Encoding</subject><subject>Euclidean division algorithm</subject><subject>girth</subject><subject>Hardware</subject><subject>Indexes</subject><subject>LDPC codes</subject><subject>Low density parity check codes</subject><subject>Mathematical analysis</subject><subject>Parity check codes</subject><subject>Polynomials</subject><subject>prime field</subject><subject>quasi-cyclic (QC)</subject><subject>Technological innovation</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUVtLHDEUHoqFivoLfAn0oQqdbU4yuT2u41aFhV60rw3HSbJmGSeazBb89x0dEc_LOXx8FzhfVR0DXQBQ823Ztqvr6wWjYBbMMCO0-lDtM5Cm5oLLvXf3p-qolC2dRk-QUPvV34uYxzuyHLB_KrGQFMgNDoPPXwo54V8JqNP6t9_seszkV1uvz3-2pE3OF3KGxTuSBrLadX10HgdyHv_FEido2W9SjuPd_WH1MWBf_NHrPqj-fF_dtJf1-sfFVbtc111D9Vj7DgUimuCDULKTQTMjgTFBO68arwCUC3CrESSq5paB45yCk-CRSyU1P6iuZl-XcGsfcrzH_GQTRvsCpLyxmMfY9d6aBrToqJKcs0aFoNGAY1QBCofOweT1efZ6yOlx58tot2mXpwcVyxohJEyJcmLxmdXlVEr24S0VqH3uxc692Ode7Gsvk-p4VkXv_ZtCKykk5fw_WFKFgA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Xu, Hengzhou</creator><creator>Duan, Yake</creator><creator>Miao, Xiaoxiao</creator><creator>Zhu, Hai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9403-4460</orcidid></search><sort><creationdate>2019</creationdate><title>Girth Analysis of Tanner's (3, 17)-Regular QC-LDPC Codes Based on Euclidean Division Algorithm</title><author>Xu, Hengzhou ; Duan, Yake ; Miao, Xiaoxiao ; Zhu, Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-eca5aaa9fef576c6f829612250ce74e7117df1b8a16a74b21d3301d61ea367683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Codes</topic><topic>Encoding</topic><topic>Euclidean division algorithm</topic><topic>girth</topic><topic>Hardware</topic><topic>Indexes</topic><topic>LDPC codes</topic><topic>Low density parity check codes</topic><topic>Mathematical analysis</topic><topic>Parity check codes</topic><topic>Polynomials</topic><topic>prime field</topic><topic>quasi-cyclic (QC)</topic><topic>Technological innovation</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Hengzhou</creatorcontrib><creatorcontrib>Duan, Yake</creatorcontrib><creatorcontrib>Miao, Xiaoxiao</creatorcontrib><creatorcontrib>Zhu, Hai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Hengzhou</au><au>Duan, Yake</au><au>Miao, Xiaoxiao</au><au>Zhu, Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Girth Analysis of Tanner's (3, 17)-Regular QC-LDPC Codes Based on Euclidean Division Algorithm</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>94917</spage><epage>94930</epage><pages>94917-94930</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[In this paper, the girth distribution of the Tanner's (3, 17)-regular quasi-cyclic LDPC (QC-LDPC) codes with code length <inline-formula> <tex-math notation="LaTeX">17p </tex-math></inline-formula> is determined, where <inline-formula> <tex-math notation="LaTeX">p </tex-math></inline-formula> is a prime and <inline-formula> <tex-math notation="LaTeX">p \equiv 1~(\bmod ~51) </tex-math></inline-formula>. By analyzing their cycle structure, five equivalent types of cycles with length not more than 10 are obtained. The existence of these five types of cycles is transmitted into polynomial equations in a 51st unit root of the prime field <inline-formula> <tex-math notation="LaTeX">\mathbb {F}_{p} </tex-math></inline-formula>. By using the Euclidean division algorithm to check the existence of solutions for such polynomial equations, the girth values of the Tanner's (3, 17)-regular QC-LDPC codes are obtained.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2929587</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9403-4460</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.94917-94930
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2455616766
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Codes
Encoding
Euclidean division algorithm
girth
Hardware
Indexes
LDPC codes
Low density parity check codes
Mathematical analysis
Parity check codes
Polynomials
prime field
quasi-cyclic (QC)
Technological innovation
Training
title Girth Analysis of Tanner's (3, 17)-Regular QC-LDPC Codes Based on Euclidean Division Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A08%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Girth%20Analysis%20of%20Tanner's%20(3,%2017)-Regular%20QC-LDPC%20Codes%20Based%20on%20Euclidean%20Division%20Algorithm&rft.jtitle=IEEE%20access&rft.au=Xu,%20Hengzhou&rft.date=2019&rft.volume=7&rft.spage=94917&rft.epage=94930&rft.pages=94917-94930&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2929587&rft_dat=%3Cproquest_doaj_%3E2455616766%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455616766&rft_id=info:pmid/&rft_ieee_id=8765603&rft_doaj_id=oai_doaj_org_article_94185c07633247ff8a91d2071a5dadd1&rfr_iscdi=true