Girth Analysis of Tanner's (3, 17)-Regular QC-LDPC Codes Based on Euclidean Division Algorithm

In this paper, the girth distribution of the Tanner's (3, 17)-regular quasi-cyclic LDPC (QC-LDPC) codes with code length 17p is determined, where p is a prime and p \equiv 1~(\bmod ~51) . By analyzing their cycle structure, five equivalent types of cycles with length not more than 10 are o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.94917-94930
Hauptverfasser: Xu, Hengzhou, Duan, Yake, Miao, Xiaoxiao, Zhu, Hai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the girth distribution of the Tanner's (3, 17)-regular quasi-cyclic LDPC (QC-LDPC) codes with code length 17p is determined, where p is a prime and p \equiv 1~(\bmod ~51) . By analyzing their cycle structure, five equivalent types of cycles with length not more than 10 are obtained. The existence of these five types of cycles is transmitted into polynomial equations in a 51st unit root of the prime field \mathbb {F}_{p} . By using the Euclidean division algorithm to check the existence of solutions for such polynomial equations, the girth values of the Tanner's (3, 17)-regular QC-LDPC codes are obtained.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2929587