KSVD-Based Multiple Description Image Coding

In this paper, we present a new multiple description coding scheme, which is based on a sparse dictionary training method called K singular value decomposition (KSVD). In the proposed scheme, each description encodes one source subset with a small quantization stepsize, and other subsets are predict...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.1962-1972
Hauptverfasser: Sun, Guina, Meng, Lili, Liu, Li, Tan, Yanyan, Zhang, Jia, Zhang, Huaxiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a new multiple description coding scheme, which is based on a sparse dictionary training method called K singular value decomposition (KSVD). In the proposed scheme, each description encodes one source subset with a small quantization stepsize, and other subsets are predictively coded with a large quantization stepsize. The source processed by the KSVD becomes sparse, which can improve the coding efficiency. The proposed scheme is then applied to lapped transform-based multiple description image coding. Finally, image coding results show that the proposed scheme achieves a better performance than the current state-of-the-art multiple description coding methods.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2018.2886823