Machine Learning and Uncertainty Quantification for Surrogate Models of Integrated Devices With a Large Number of Parameters
This paper deals with the application of the support vector machine (SVM) and the least-squares SVM regressions to the uncertainty quantification of complex systems with a high-dimensional parameter space. The above regression techniques are used to build accurate and compact surrogate models of the...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.4056-4066 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the application of the support vector machine (SVM) and the least-squares SVM regressions to the uncertainty quantification of complex systems with a high-dimensional parameter space. The above regression techniques are used to build accurate and compact surrogate models of the system responses from a limited set of training samples. The accuracy and the feasibility of the proposed modeling techniques are then investigated by comparing their results with the ones predicted by a sparse polynomial chaos expansion by considering two real-life problems with 8 and 30 random variables, respectively. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2018.2888903 |