Dual-Band Ten-Element MIMO Array Based on Dual-Mode IFAs for 5G Terminal Applications

A dual-band ten-element MIMO array based on dual-mode inverted-F antennas (IFAs) for 5G terminal applications is presented in this paper. The proposed dual-mode IFA is composed of two radiators, which are etched on the outer and inner surfaces of the side-edge frame. The outer part of the antenna ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.178476-178485
Hauptverfasser: Hu, Wei, Liu, Xuekang, Gao, Steven, Wen, Le-Hu, Qian, Long, Feng, Tianxi, Xu, Rui, Fei, Peng, Liu, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A dual-band ten-element MIMO array based on dual-mode inverted-F antennas (IFAs) for 5G terminal applications is presented in this paper. The proposed dual-mode IFA is composed of two radiators, which are etched on the outer and inner surfaces of the side-edge frame. The outer part of the antenna generates the low-order mode at 3.5 GHz, while the inner part radiates another one-quarter-wavelength mode at 4.9 GHz. In this way, the IFA can achieve dual-band operation within a compact size of 10.6 × 5.3 × 0.8 mm 3 . Based on the proposed antenna, a dual-band ten-element multiple-input and multiple-output (MIMO) array is developed for 5G terminal applications. By combining neutralization line structures with decoupling branches, the isolations between the elements are improved. To validate the design concept, a prototype of the ten-element MIMO array is designed, fabricated, and measured. The experimental results show that the proposed antenna can cover the 3.3-3.6 GHz and 4.8-5.0 GHz bands with good isolation and high efficiency. Furthermore, the envelope correlation coefficient (ECC), and channel capacity are also calculated to verify the MIMO performances for 5G sub-6GHz applications.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2958745