Detecting Mathematical Expressions in Scientific Document Images Using a U-Net Trained on a Diverse Dataset

A detection method for mathematical expressions in scientific document images is proposed. Inspired by the promising performance of U-Net, a convolutional network architecture originally proposed for the semantic segmentation of biomedical images, the proposed method uses image conversion by a U-Net...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019-01, Vol.7, p.1-1
Hauptverfasser: Ohyama, Wataru, Suzuki, Masakazu, Uchida, Seiichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A detection method for mathematical expressions in scientific document images is proposed. Inspired by the promising performance of U-Net, a convolutional network architecture originally proposed for the semantic segmentation of biomedical images, the proposed method uses image conversion by a U-Net framework. The proposed method does not use any information from mathematical and linguistic grammar so that it can be a supplemental bypass in the conventional mathematical optical character recognition (OCR) process pipeline. The evaluation experiments confirmed that (1) the performance of mathematical symbol and expression detection by the proposed method is superior to that of InftyReader, which is state-of-the-art software for mathematical OCR; (2) the coverage of the training dataset to the variation of document style is important; and (3) retraining with small additional training samples will be effective to improve the performance. An additional contribution is the release of a dataset for benchmarking the OCR for scientific documents.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2945825