A Modified Hybrid Maximum Power Point Tracking Method for Photovoltaic Arrays Under Partially Shading Condition
To ensure the photovoltaic (PV) arrays under partial shading condition(PSC) could still output maximum power quickly and efficiently, this work presents a modified hybrid maximum power point tracking (MPPT) method, which applies artificial neural network (ANN) to the modified perturb and observe (MP...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.160091-160100 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To ensure the photovoltaic (PV) arrays under partial shading condition(PSC) could still output maximum power quickly and efficiently, this work presents a modified hybrid maximum power point tracking (MPPT) method, which applies artificial neural network (ANN) to the modified perturb and observe (MP&O). Instead of using expensive illumination intensity sensors directly, the illumination intensity on each module in the PV array can be obtained indirectly by sampling the specific points of their own cheaper voltage-current sensors. ANN uses indirect illumination intensity to predict the optimal voltage areas of the global maximum power point (GMPP). Based on the areas, MP&O adopts a adaptive step size strategy to obtain GMPP. By modeling and simulation in Matlab/Simulink, it is shown that the tracking time and efficiency of the proposed method in this work can reach 0.026s and 99.87% respectively. Compared with other methods, the method has faster speed, higher efficiency, smaller fluctuation and lower complexity. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2950375 |