BTM and GloVe Similarity Linear Fusion-Based Short Text Clustering Algorithm for Microblog Hot Topic Discovery

Microblog hot topic discovery is one of the research hotspots in the field of text mining. The distance function of traditional K-means leads to low clustering accuracy, which leads to poor hot topic discovery. Three definitions are proposed in this paper: title words and body words, positional cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.32215-32225
Hauptverfasser: Wu, Di, Zhang, Mengtian, Shen, Chao, Huang, Zhuyun, Gu, Mingxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microblog hot topic discovery is one of the research hotspots in the field of text mining. The distance function of traditional K-means leads to low clustering accuracy, which leads to poor hot topic discovery. Three definitions are proposed in this paper: title words and body words, positional contribution-based weight and fusion similarity-based distance. The short text clustering algorithm based on BTM and GloVe similarity linear fusion (BG & SLF-Kmeans) is further proposed. BTM and GloVe are used to model the preprocessed microblog short texts. JS divergence is adopted to calculate the text similarity based on BTM topic modeling. WMD of improved word weight (IWMD) is used to calculate the text similarity based on GloVe word vector modeling. Finally, the two similarities are linearly fused and used as the distance function to realize K-means clustering. Specific word sets of 6 hot topics can be obtained, and microblog hot topics can be discovered. The experimental results show that BG & SLF-Kmeans significantly improves clustering accuracy compared with TF-IDF & K-means, BTM & K-means, and BTF & SLF-Kmeans.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2973430