Low-Complexity High-Resolution Parameter Estimation for Automotive MIMO Radars

In this paper, we propose a parameter estimation method for multiple-input-multiple-output (MIMO) automotive radars that consists of two stages. The first stage is a low-complexity three-dimensional (3D) constant false alarm rate (CFAR) detection technique that exploits spatial filtering to extend r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.16127-16138
Hauptverfasser: Lin, Yu-Chien, Lee, Ta-Sung, Pan, Yun-Han, Lin, Kuan-Hen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a parameter estimation method for multiple-input-multiple-output (MIMO) automotive radars that consists of two stages. The first stage is a low-complexity three-dimensional (3D) constant false alarm rate (CFAR) detection technique that exploits spatial filtering to extend radar coverage, and it performs low-complexity peak detection. The second stage is an ESPRIT-based direction-of-arrival (DOA) estimation technique that adopts time-frequency resource division to generate high-quality snapshots and it performs DOA estimation of targets without the knowledge of the target number. Computer simulations reveal that the proposed method achieves the performance of the two-dimensional ordered statistic CFAR (2D OS-CFAR) while having much lower computational complexity, and it offers the higher resolution DOA estimation compared to the conventional MIMO radars.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2926413