Height Optimization in Aerial Networks for Enhanced Broadband Communications at Sea

The Blue Economy has been growing in sectors such as offshore renewable energy, aquaculture, marine biotechnology, and deep sea mining. However, suitable wireless and mobile communications are lacking offshore. On the one hand, there is no coverage from terrestrial networks; on the other hand, satel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.28311-28323
Hauptverfasser: Teixeira, Filipe B., Campos, Rui, Ricardo, Manuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Blue Economy has been growing in sectors such as offshore renewable energy, aquaculture, marine biotechnology, and deep sea mining. However, suitable wireless and mobile communications are lacking offshore. On the one hand, there is no coverage from terrestrial networks; on the other hand, satellite communications are still narrowband and expensive. Recently, the use of multi-hop airborne communications has been proposed to extend the coverage from terrestrial networks offshore but the communications range of these solutions is highly dependent on the height of the communications nodes. In this paper, we study the RF signal propagation in the maritime environment when the height of the receiver is changed and propose a position control approach for airborne multi-hop networks that maximizes the network capacity by taking full advantage of the signal reflections on the sea surface. The results obtained show that the proposed approach can provide lower propagation losses and higher network throughputs than random or fixed height approaches.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2971487