Fast single image defogging with robust sky detection

Haze is a source of unreliability for computer vision applications in outdoor scenarios, and it is usually caused by atmospheric conditions. The Dark Channel Prior (DCP) has shown remarkable results in image defogging with three main limitations: 1) high time-consumption, 2) artifact generation, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.1-1
Hauptverfasser: Salazar-Colores, Sebastian, Ulises Moya-Sanchez, E., Arreguin, Juan-Manuel Ramos, Cabal-Yepez, Eduardo, Flores, Gerardo, Cortes, Ulises
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Haze is a source of unreliability for computer vision applications in outdoor scenarios, and it is usually caused by atmospheric conditions. The Dark Channel Prior (DCP) has shown remarkable results in image defogging with three main limitations: 1) high time-consumption, 2) artifact generation, and 3) sky-region over-saturation. Therefore, current work has focused on improving processing time without losing restoration quality and avoiding image artifacts during image defogging. Hence in this research, a novel methodology based on depth approximations through DCP, local Shannon entropy, and Fast Guided Filter is proposed for reducing artifacts and improving image recovery on sky regions with low computation time. The proposed-method performance is assessed using more than 500 images from three datasets: Hybrid Subjective Testing Set from Realistic Single Image Dehazing (HSTS-RESIDE), the Synthetic Objective Testing Set from RESIDE (SOTS-RESIDE) and the HazeRD. Experimental results demonstrate that the proposed approach has an outstanding performance over state-of-the-art methods in reviewed literature, which is validated qualitatively and quantitatively through Peak Signal-to-Noise Ratio (PSNR), Naturalness Image Quality Evaluator (NIQE) and Structural SIMilarity (SSIM) index on retrieved images, considering different visual ranges, under distinct illumination and contrast conditions. Analyzing images with various resolutions, the method proposed in this work shows the lowest processing time under similar software and hardware conditions.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.3015724