The 2-Adic Complexity of Ding-Helleseth Generalized Cyclotomic Sequences of Order 2 and Period pq
This paper considers the 2-adic complexity of Ding-Helleseth generalized cyclotomic sequences of order 2 and period pq , where p and q are distinct odd primes with \mathrm {gcd}(p-1,q-1)=2,p\equiv q\equiv 3\pmod 4 . These sequences have been proved to possess good linear complexity. Our result...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.140682-140687 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper considers the 2-adic complexity of Ding-Helleseth generalized cyclotomic sequences of order 2 and period pq , where p and q are distinct odd primes with \mathrm {gcd}(p-1,q-1)=2,p\equiv q\equiv 3\pmod 4 . These sequences have been proved to possess good linear complexity. Our results show that the 2-adic complexity of these sequences is at least pq-q-1 . Then it is large enough to resist the attack of the rational approximation algorithm. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.3012570 |