Convolutional Neural Network (CNN)-Based Fast Back Projection Imaging With Noise-Resistant Capability

We propose and demonstrate a convolutional neural network (CNN)-based fast back projection (FBP) imaging method, which has noise-resistant capability in strong noise conditions. In this method, the desired high-resolution image is constructed from a low-resolution back projection (BP) image using a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.117080-117085
Hauptverfasser: Sun, Guanqun, Zhang, Fangzheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose and demonstrate a convolutional neural network (CNN)-based fast back projection (FBP) imaging method, which has noise-resistant capability in strong noise conditions. In this method, the desired high-resolution image is constructed from a low-resolution back projection (BP) image using a pre-trained CNN. Compared to the high-resolution imaging with basic BP algorithm, the proposed CNN-based FBP imaging has significantly reduced complexity, enabling a fast imaging speed. Meanwhile, by training the CNN using noiseless images as the desired output, the CNN-based FBP imaging is noise-resistant, which helps to obtain high-quality images in strong noise scenarios. Performance of this CNN-based FBP imaging method is investigated and compared with basic BP imaging and other methods through extensive numerical simulations. The results show that, using a CNN with optimized structure, the proposed method can greatly improve the imaging speed. Meanwhile, high-quality images with improved peak signal to noise ratios (PSNRs) are obtained in low signal-to-noise-ratio (SNR) conditions. This CNN-based FBP imaging method is expected to find applications where high-quality and fast radar imaging is required.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.3004860