Conversational Semantic Parsing for Dialog State Tracking

We consider a new perspective on dialog state tracking (DST), the task of estimating a user's goal through the course of a dialog. By formulating DST as a semantic parsing task over hierarchical representations, we can incorporate semantic compositionality, cross-domain knowledge sharing and co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-05
Hauptverfasser: Cheng, Jianpeng, Agrawal, Devang, Hector Martinez Alonso, Bhargava, Shruti, Driesen, Joris, Flego, Federico, Ghosh, Shaona, Kaplan, Dain, Kartsaklis, Dimitri, Li, Lin, Piraviperumal, Dhivya, Williams, Jason D, Yu, Hong, Seaghdha, Diarmuid O, Johannsen, Anders
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a new perspective on dialog state tracking (DST), the task of estimating a user's goal through the course of a dialog. By formulating DST as a semantic parsing task over hierarchical representations, we can incorporate semantic compositionality, cross-domain knowledge sharing and co-reference. We present TreeDST, a dataset of 27k conversations annotated with tree-structured dialog states and system acts. We describe an encoder-decoder framework for DST with hierarchical representations, which leads to 20% improvement over state-of-the-art DST approaches that operate on a flat meaning space of slot-value pairs.
ISSN:2331-8422