Modeling of Both Arrhenius and Non-Arrhenius Temperature-Dependent Drain Current for Organic Thin-Film Transistors

To describe both Arrhenius and non-Arrhenius temperature-dependent drain currents for the organic thin-film transistors, the effective trapped carrier concentration expression is presented. Based on the expression, following the Shur and Hack's trap limited carrier conduction theory, the analyt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2020-11, Vol.67 (11), p.5091-5096
Hauptverfasser: He, Hongyu, Xiong, Chao, Yin, Junli, Wang, Xinlin, Lin, Xinnan, Zhang, Shengdong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5096
container_issue 11
container_start_page 5091
container_title IEEE transactions on electron devices
container_volume 67
creator He, Hongyu
Xiong, Chao
Yin, Junli
Wang, Xinlin
Lin, Xinnan
Zhang, Shengdong
description To describe both Arrhenius and non-Arrhenius temperature-dependent drain currents for the organic thin-film transistors, the effective trapped carrier concentration expression is presented. Based on the expression, following the Shur and Hack's trap limited carrier conduction theory, the analytical drain current model is developed. The temperature-dependent trap states' density is presented to explain the origin of the effective trapped carrier concentration expression.
doi_str_mv 10.1109/TED.2020.3025269
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2454469975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9206534</ieee_id><sourcerecordid>2454469975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-ec0244e9e7861c81bfbd451eef1bebd75b579c6271a314aec9645f21e83885253</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhC0EEuVxR-JiiXOK7dhJfCx9AFKhl3COnGTTumrtsE4O_HsStYLTalYzu5qPkAfOppwz_ZwvF1PBBJvGTCiR6Asy4UqlkU5kckkmjPEs0nEWX5ObEPaDTKQUE4IfvoaDdVvqG_riux2dIe7A2T5Q42r66V30v8nh2AKarkeIFtCCq8F1dIHGOjrvEUfVeKQb3BpnK5rvrItW9nCkORoXbOg8hjty1ZhDgPvzvCVfq2U-f4vWm9f3-WwdVULzLoKKCSlBQ5olvMp42ZS1VByg4SWUdapKleoqESk3MZcGqqGpagSHLM4yJVR8S55Od1v03z2Ertj7Ht3wshBSSZlonY4udnJV6ENAaIoW7dHgT8FZMZItBrLFSLY4kx0ij6eIBYA_uxYsUbGMfwF1T3U4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454469975</pqid></control><display><type>article</type><title>Modeling of Both Arrhenius and Non-Arrhenius Temperature-Dependent Drain Current for Organic Thin-Film Transistors</title><source>IEEE Electronic Library (IEL)</source><creator>He, Hongyu ; Xiong, Chao ; Yin, Junli ; Wang, Xinlin ; Lin, Xinnan ; Zhang, Shengdong</creator><creatorcontrib>He, Hongyu ; Xiong, Chao ; Yin, Junli ; Wang, Xinlin ; Lin, Xinnan ; Zhang, Shengdong</creatorcontrib><description>To describe both Arrhenius and non-Arrhenius temperature-dependent drain currents for the organic thin-film transistors, the effective trapped carrier concentration expression is presented. Based on the expression, following the Shur and Hack's trap limited carrier conduction theory, the analytical drain current model is developed. The temperature-dependent trap states' density is presented to explain the origin of the effective trapped carrier concentration expression.</description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2020.3025269</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Carrier concentration ; Carrier density ; drain current model ; Electric potential ; Electron traps ; Numerical models ; Semiconductor devices ; temperature characteristics ; Temperature dependence ; Thin film transistors ; thin-film transistor (TFT) ; Transistors ; trap states</subject><ispartof>IEEE transactions on electron devices, 2020-11, Vol.67 (11), p.5091-5096</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-ec0244e9e7861c81bfbd451eef1bebd75b579c6271a314aec9645f21e83885253</citedby><cites>FETCH-LOGICAL-c291t-ec0244e9e7861c81bfbd451eef1bebd75b579c6271a314aec9645f21e83885253</cites><orcidid>0000-0002-1815-8661 ; 0000-0003-0721-9067</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9206534$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9206534$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Hongyu</creatorcontrib><creatorcontrib>Xiong, Chao</creatorcontrib><creatorcontrib>Yin, Junli</creatorcontrib><creatorcontrib>Wang, Xinlin</creatorcontrib><creatorcontrib>Lin, Xinnan</creatorcontrib><creatorcontrib>Zhang, Shengdong</creatorcontrib><title>Modeling of Both Arrhenius and Non-Arrhenius Temperature-Dependent Drain Current for Organic Thin-Film Transistors</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description>To describe both Arrhenius and non-Arrhenius temperature-dependent drain currents for the organic thin-film transistors, the effective trapped carrier concentration expression is presented. Based on the expression, following the Shur and Hack's trap limited carrier conduction theory, the analytical drain current model is developed. The temperature-dependent trap states' density is presented to explain the origin of the effective trapped carrier concentration expression.</description><subject>Analytical models</subject><subject>Carrier concentration</subject><subject>Carrier density</subject><subject>drain current model</subject><subject>Electric potential</subject><subject>Electron traps</subject><subject>Numerical models</subject><subject>Semiconductor devices</subject><subject>temperature characteristics</subject><subject>Temperature dependence</subject><subject>Thin film transistors</subject><subject>thin-film transistor (TFT)</subject><subject>Transistors</subject><subject>trap states</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkEtPwzAQhC0EEuVxR-JiiXOK7dhJfCx9AFKhl3COnGTTumrtsE4O_HsStYLTalYzu5qPkAfOppwz_ZwvF1PBBJvGTCiR6Asy4UqlkU5kckkmjPEs0nEWX5ObEPaDTKQUE4IfvoaDdVvqG_riux2dIe7A2T5Q42r66V30v8nh2AKarkeIFtCCq8F1dIHGOjrvEUfVeKQb3BpnK5rvrItW9nCkORoXbOg8hjty1ZhDgPvzvCVfq2U-f4vWm9f3-WwdVULzLoKKCSlBQ5olvMp42ZS1VByg4SWUdapKleoqESk3MZcGqqGpagSHLM4yJVR8S55Od1v03z2Ertj7Ht3wshBSSZlonY4udnJV6ENAaIoW7dHgT8FZMZItBrLFSLY4kx0ij6eIBYA_uxYsUbGMfwF1T3U4</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>He, Hongyu</creator><creator>Xiong, Chao</creator><creator>Yin, Junli</creator><creator>Wang, Xinlin</creator><creator>Lin, Xinnan</creator><creator>Zhang, Shengdong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1815-8661</orcidid><orcidid>https://orcid.org/0000-0003-0721-9067</orcidid></search><sort><creationdate>20201101</creationdate><title>Modeling of Both Arrhenius and Non-Arrhenius Temperature-Dependent Drain Current for Organic Thin-Film Transistors</title><author>He, Hongyu ; Xiong, Chao ; Yin, Junli ; Wang, Xinlin ; Lin, Xinnan ; Zhang, Shengdong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-ec0244e9e7861c81bfbd451eef1bebd75b579c6271a314aec9645f21e83885253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical models</topic><topic>Carrier concentration</topic><topic>Carrier density</topic><topic>drain current model</topic><topic>Electric potential</topic><topic>Electron traps</topic><topic>Numerical models</topic><topic>Semiconductor devices</topic><topic>temperature characteristics</topic><topic>Temperature dependence</topic><topic>Thin film transistors</topic><topic>thin-film transistor (TFT)</topic><topic>Transistors</topic><topic>trap states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Hongyu</creatorcontrib><creatorcontrib>Xiong, Chao</creatorcontrib><creatorcontrib>Yin, Junli</creatorcontrib><creatorcontrib>Wang, Xinlin</creatorcontrib><creatorcontrib>Lin, Xinnan</creatorcontrib><creatorcontrib>Zhang, Shengdong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Hongyu</au><au>Xiong, Chao</au><au>Yin, Junli</au><au>Wang, Xinlin</au><au>Lin, Xinnan</au><au>Zhang, Shengdong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Both Arrhenius and Non-Arrhenius Temperature-Dependent Drain Current for Organic Thin-Film Transistors</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>67</volume><issue>11</issue><spage>5091</spage><epage>5096</epage><pages>5091-5096</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract>To describe both Arrhenius and non-Arrhenius temperature-dependent drain currents for the organic thin-film transistors, the effective trapped carrier concentration expression is presented. Based on the expression, following the Shur and Hack's trap limited carrier conduction theory, the analytical drain current model is developed. The temperature-dependent trap states' density is presented to explain the origin of the effective trapped carrier concentration expression.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2020.3025269</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1815-8661</orcidid><orcidid>https://orcid.org/0000-0003-0721-9067</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2020-11, Vol.67 (11), p.5091-5096
issn 0018-9383
1557-9646
language eng
recordid cdi_proquest_journals_2454469975
source IEEE Electronic Library (IEL)
subjects Analytical models
Carrier concentration
Carrier density
drain current model
Electric potential
Electron traps
Numerical models
Semiconductor devices
temperature characteristics
Temperature dependence
Thin film transistors
thin-film transistor (TFT)
Transistors
trap states
title Modeling of Both Arrhenius and Non-Arrhenius Temperature-Dependent Drain Current for Organic Thin-Film Transistors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A54%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Both%20Arrhenius%20and%20Non-Arrhenius%20Temperature-Dependent%20Drain%20Current%20for%20Organic%20Thin-Film%20Transistors&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=He,%20Hongyu&rft.date=2020-11-01&rft.volume=67&rft.issue=11&rft.spage=5091&rft.epage=5096&rft.pages=5091-5096&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2020.3025269&rft_dat=%3Cproquest_RIE%3E2454469975%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454469975&rft_id=info:pmid/&rft_ieee_id=9206534&rfr_iscdi=true