Deep Video Prediction Network-ased Inter-Frame Coding in HEVC

In this paper, we propose a novel Convolutional Neural Network (CNN) based video coding technique using a video prediction network (VPN) to support enhanced motion prediction in High Efficiency Video Coding (HEVC). Specifically, we design a CNN VPN to generate a virtual reference frame (VRF), which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.95906
Hauptverfasser: Jung-Kyung, Lee, Kim, Nayoung, Cho, Seunghyun, Je-Won Kang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a novel Convolutional Neural Network (CNN) based video coding technique using a video prediction network (VPN) to support enhanced motion prediction in High Efficiency Video Coding (HEVC). Specifically, we design a CNN VPN to generate a virtual reference frame (VRF), which is synthesized using previously coded frames, to improve coding efficiency. The proposed VPN uses two sub-VPN architectures in cascade to predict the current frame in the same time instance. The VRF is expected to have higher temporal correlation than a conventional reference frame, and, thus it is substituted for a conventional reference frame. The proposed technique is incorporated into the HEVC inter-coding framework. Particularly, the VRF is managed in a HEVC reference picture list, so that each prediction unit (PU) can choose a better prediction signal through Rate-Distortion optimization without any additional side information. Furthermore, we modify the HEVC inter-prediction mechanisms of Advanced Motion Vector Prediction and Merge modes adaptively when the current PU uses the VRF as a reference frame. In this manner, the proposed technique can exploit the PU-wise multi-hypothesis prediction techniques in HEVC. Since the proposed VPN can perform both the video interpolation and extrapolation, it can be used for Random Access (RA) and Low Delay B (LD) coding configurations. It is shown in experimental results that the proposed technique provides −2.9% and −5.7% coding gains, respectively, in RA and LD coding configurations as compared to the HEVC reference software, HM 16.6 version.
ISSN:2169-3536
DOI:10.1109/ACCESS.2020.2993566