A unique core-shell structured ZnO/NiO heterojunction to improve the performance of supercapacitors produced using a chemical bath deposition approach
The integration of metal oxide composite nanostructures has attracted great attention in supercapacitor (SC) applications. Herein, we fabricated a series of metal oxide composite nanostructures, including ZnO nanowires, NiO nanosheets, ZnO/CuO nanowire arrays, ZnO/FeO nanocrystals, ZnO/NiO nanosheet...
Gespeichert in:
Veröffentlicht in: | Dalton transactions : an international journal of inorganic chemistry 2020-10, Vol.49 (41), p.14432-14444 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The integration of metal oxide composite nanostructures has attracted great attention in supercapacitor (SC) applications. Herein, we fabricated a series of metal oxide composite nanostructures, including ZnO nanowires, NiO nanosheets, ZnO/CuO nanowire arrays, ZnO/FeO nanocrystals, ZnO/NiO nanosheets and ZnO/PbO nanotubes,
via
a simple and cost-effective chemical bath deposition (CBD) method. The electrochemical properties of the produced SCs were examined by performing cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) analysis, and electrochemical impedance spectroscopy (EIS). Of the different metal oxides and metal oxide composites tested, the unique surface morphology of the ZnO/NiO nanosheets most effectively increased the electron transfer rate and electrical conductivity, which resulted in improved energy storage properties. The binder-free ZnO/NiO electrode delivered a high specific capacitance/capacity of 1248 F g
−1
(599 mA h g
−1
) at 8 mA cm
−2
and long-term cycling stability over the course of 3000 cycles with a capacity retention of 79%. These results suggested a superiority in performance of the ZnO/NiO nanosheets relative to the nanowires, nanowire arrays, nanocrystals, and nanotubes. Thus, the present work has provided an opportunity to fabricate new metal oxide composite nanostructures with high-performance energy storage devices.
The integration of metal oxide composite nanostructures has attracted great attention in supercapacitor (SC) applications. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/d0dt00263a |