Nitrogen-doped graphene quantum dots anchored on NiFe layered double-hydroxide nanosheets catalyze the oxygen evolution reaction
The design and synthesis of efficient, durable, low-cost catalysts are vital for the oxygen evolution reaction (OER) because it is an important process in energy conversion and storage. Here, we describe the use of a simple hydrothermal process to successfully synthesize novel nitrogen-doped graphen...
Gespeichert in:
Veröffentlicht in: | New journal of chemistry 2020-11, Vol.44 (41), p.17744-17752 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The design and synthesis of efficient, durable, low-cost catalysts are vital for the oxygen evolution reaction (OER) because it is an important process in energy conversion and storage. Here, we describe the use of a simple hydrothermal process to successfully synthesize novel nitrogen-doped graphene quantum dots (N-GQDs) anchored on NiFe layered double hydroxide sheets (N-GQDs/NiFe-LDH). Structural, morphological, and crystalline phase characteristics were confirmed by applying SEM, TEM, XPS, and XRD studies. These analyses clearly showed the formation of the N-GQDs/NiFe-LDH composite with a hierarchical nanosheet structure possessing higher surface area values and a wide range of pores (10-180 nm). Further study showed that the as-prepared N-GQDs/NiFe-LDH composite exhibited excellent electrocatalytic activity for the OER in alkaline solution, affording small overpotential of 279 and 300 mV at current densities of 20 and 50 mA cm
−2
, respectively, a low Tafel slope of 47 mV dec
−1
, and satisfactory stability. The outstanding reactive kinetics outperformed those of most previously reported transition-metal-based catalysts. The excellent OER catalytic activity for the N-GQDs/NiFe-LDH composite is attributed to the synergistic effect of the N-GQDs and NiFe-LDH, the existence of pyridinic-N and graphitic-N on the N-GQDs, and the hierarchical nanosheet and its porous structure. This work provides a new strategy for designing and fabricating novel carbon-based LDH composites.
N-GQDs/NiFe-LDH layered nanosheet structure has excellent OER catalytic performance. |
---|---|
ISSN: | 1144-0546 1369-9261 |
DOI: | 10.1039/d0nj03537h |