Comparative study of binary cadmium sulfide (CdS) and tin disulfide (SnS2) thin buffer layers

[Display omitted] •Binary CdS and SnS2 were prepared via CBD and Hydrothermal procedures, respectively.•XRD diffraction peaks of CdS and SnS2 thin films are confirmed polycrystalline nature.•The surface homogeneity of SnS2 exhibit big grains and coalescence than CdS thin films.•The resultant band ga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2020-09, Vol.208, p.637-642
Hauptverfasser: Ullah, Shafi, Bouich, Amal, Ullah, Hanif, Mari, Bernabé, Mollar, Miguel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 642
container_issue
container_start_page 637
container_title Solar energy
container_volume 208
creator Ullah, Shafi
Bouich, Amal
Ullah, Hanif
Mari, Bernabé
Mollar, Miguel
description [Display omitted] •Binary CdS and SnS2 were prepared via CBD and Hydrothermal procedures, respectively.•XRD diffraction peaks of CdS and SnS2 thin films are confirmed polycrystalline nature.•The surface homogeneity of SnS2 exhibit big grains and coalescence than CdS thin films.•The resultant band gaps to be 2.45 eV, 2.20 eV for SnS2 and CdS thin films, respectively.•A remarkable photocurrent (140 µA/ cm2) observed for SnS2 as compare to CdS (80 µA/ cm2) thin films. Binary compound tin disulfide (SnS2) and cadmium sulfide (CdS) are the potential candidates used as a buffer layer for copper indium gallium selenide (CIGS) and copper zinc tin sulfide (CZTS) thin-film device. Herein, both compounds have been successfully prepared through simple hydrothermal (HD) and chemical bath deposition (CBD) techniques, respectively. The prepared samples were characterized by different available techniques like X-ray diffraction (XRD), atomic force microscopy (AFM), surface electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmittance electrons microscopy (TEM), UV–Visible spectroscopy and photoelectrochemical (PEC) analysis. The XRD analysis confirms the polycrystalline nature of the prepared thin films. AFM analysis showed that the SnS2 display better roughness (60 nm), grain size (75 nm) than CdS roughness (23 nm), grain size (41 nm) thin films. SEM and EDS studies revealed near stoichiometry behavior of elemental composition of the films. The optical absorption spectrum showed the direct bandgap of CdS 2.45 eV and 2.20 eV for SnS2 thin films. The PEC analysis revealed that the SnS2 thin films exhibit two times higher photoresponse (140 µA) as compare to CdS (80 µA) thin films. The SnS2 high photocurrent could be attributed to the small band gap and increase in grain size which can trap more incident light. Based on the results the SnS2 used as a buffer layer can be a good choice for an efficient photovoltaic device.
doi_str_mv 10.1016/j.solener.2020.08.036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2453914962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X20308756</els_id><sourcerecordid>2453914962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-65dcadbd4ae8073de795267ab569aa506221ca6ee936b1d6c81c501ea62ecfa83</originalsourceid><addsrcrecordid>eNqFUMtKxDAUDaLgOPoJQsCNs2jNo03alcjgCwZcjIIbCWlyiyl9jEk7MH9vhhncurpw7nlwDkLXlKSUUHHXpGFooQefMsJISoqUcHGCZjSTNKEsl6doRggvElKyz3N0EUJDCJW0kDP0tRy6jfZ6dFvAYZzsDg81rlyv_Q4bbTs3dThMbe0s4NulXS-w7i0eXY-t-8PX_Zot8Pgd0Wqqa_C41Tvw4RKd1boNcHW8c_Tx9Pi-fElWb8-vy4dVYjiXYyJyG6Mqm2koiOQWZJkzIXWVi1LrnAjGqNECoOSiolaYgpqcUNCCgal1wefo5uC78cPPBGFUzTD5PkYqluW8pFkpWGTlB5bxQwgearXxrotFFSVqv6Rq1HFJtV9SkULFJaPu_qCDWGHr4jcYB70B6zyYUdnB_ePwC1MNf1M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453914962</pqid></control><display><type>article</type><title>Comparative study of binary cadmium sulfide (CdS) and tin disulfide (SnS2) thin buffer layers</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ullah, Shafi ; Bouich, Amal ; Ullah, Hanif ; Mari, Bernabé ; Mollar, Miguel</creator><creatorcontrib>Ullah, Shafi ; Bouich, Amal ; Ullah, Hanif ; Mari, Bernabé ; Mollar, Miguel</creatorcontrib><description>[Display omitted] •Binary CdS and SnS2 were prepared via CBD and Hydrothermal procedures, respectively.•XRD diffraction peaks of CdS and SnS2 thin films are confirmed polycrystalline nature.•The surface homogeneity of SnS2 exhibit big grains and coalescence than CdS thin films.•The resultant band gaps to be 2.45 eV, 2.20 eV for SnS2 and CdS thin films, respectively.•A remarkable photocurrent (140 µA/ cm2) observed for SnS2 as compare to CdS (80 µA/ cm2) thin films. Binary compound tin disulfide (SnS2) and cadmium sulfide (CdS) are the potential candidates used as a buffer layer for copper indium gallium selenide (CIGS) and copper zinc tin sulfide (CZTS) thin-film device. Herein, both compounds have been successfully prepared through simple hydrothermal (HD) and chemical bath deposition (CBD) techniques, respectively. The prepared samples were characterized by different available techniques like X-ray diffraction (XRD), atomic force microscopy (AFM), surface electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmittance electrons microscopy (TEM), UV–Visible spectroscopy and photoelectrochemical (PEC) analysis. The XRD analysis confirms the polycrystalline nature of the prepared thin films. AFM analysis showed that the SnS2 display better roughness (60 nm), grain size (75 nm) than CdS roughness (23 nm), grain size (41 nm) thin films. SEM and EDS studies revealed near stoichiometry behavior of elemental composition of the films. The optical absorption spectrum showed the direct bandgap of CdS 2.45 eV and 2.20 eV for SnS2 thin films. The PEC analysis revealed that the SnS2 thin films exhibit two times higher photoresponse (140 µA) as compare to CdS (80 µA) thin films. The SnS2 high photocurrent could be attributed to the small band gap and increase in grain size which can trap more incident light. Based on the results the SnS2 used as a buffer layer can be a good choice for an efficient photovoltaic device.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2020.08.036</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Absorption spectra ; Atomic force microscopy ; Buffer layer ; Buffer layers ; Cadmium ; Cadmium compounds ; Cadmium sulfide ; CdS ; Characterization ; Chemical composition ; Comparative studies ; Copper ; Copper compounds ; Copper indium gallium selenides ; Copper zinc tin sulfide ; Electron microscopy ; Energy gap ; Gallium ; Grain size ; Incident light ; Indium ; Microscopy ; Optical and electrochemical analysis ; Particle size ; Photoelectric effect ; Photoelectric emission ; Photovoltaics ; Roughness ; Scanning electron microscopy ; Selenide ; SnS2 ; Solar energy ; Spectroscopy ; Spectrum analysis ; Stoichiometry ; Sulfides ; Thin films ; Tin ; Tin disulfide ; X-ray diffraction</subject><ispartof>Solar energy, 2020-09, Vol.208, p.637-642</ispartof><rights>2020 International Solar Energy Society</rights><rights>Copyright Pergamon Press Inc. Sep 15, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-65dcadbd4ae8073de795267ab569aa506221ca6ee936b1d6c81c501ea62ecfa83</citedby><cites>FETCH-LOGICAL-c337t-65dcadbd4ae8073de795267ab569aa506221ca6ee936b1d6c81c501ea62ecfa83</cites><orcidid>0000-0003-0001-419X ; 0000-0003-4315-0407</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.solener.2020.08.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Ullah, Shafi</creatorcontrib><creatorcontrib>Bouich, Amal</creatorcontrib><creatorcontrib>Ullah, Hanif</creatorcontrib><creatorcontrib>Mari, Bernabé</creatorcontrib><creatorcontrib>Mollar, Miguel</creatorcontrib><title>Comparative study of binary cadmium sulfide (CdS) and tin disulfide (SnS2) thin buffer layers</title><title>Solar energy</title><description>[Display omitted] •Binary CdS and SnS2 were prepared via CBD and Hydrothermal procedures, respectively.•XRD diffraction peaks of CdS and SnS2 thin films are confirmed polycrystalline nature.•The surface homogeneity of SnS2 exhibit big grains and coalescence than CdS thin films.•The resultant band gaps to be 2.45 eV, 2.20 eV for SnS2 and CdS thin films, respectively.•A remarkable photocurrent (140 µA/ cm2) observed for SnS2 as compare to CdS (80 µA/ cm2) thin films. Binary compound tin disulfide (SnS2) and cadmium sulfide (CdS) are the potential candidates used as a buffer layer for copper indium gallium selenide (CIGS) and copper zinc tin sulfide (CZTS) thin-film device. Herein, both compounds have been successfully prepared through simple hydrothermal (HD) and chemical bath deposition (CBD) techniques, respectively. The prepared samples were characterized by different available techniques like X-ray diffraction (XRD), atomic force microscopy (AFM), surface electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmittance electrons microscopy (TEM), UV–Visible spectroscopy and photoelectrochemical (PEC) analysis. The XRD analysis confirms the polycrystalline nature of the prepared thin films. AFM analysis showed that the SnS2 display better roughness (60 nm), grain size (75 nm) than CdS roughness (23 nm), grain size (41 nm) thin films. SEM and EDS studies revealed near stoichiometry behavior of elemental composition of the films. The optical absorption spectrum showed the direct bandgap of CdS 2.45 eV and 2.20 eV for SnS2 thin films. The PEC analysis revealed that the SnS2 thin films exhibit two times higher photoresponse (140 µA) as compare to CdS (80 µA) thin films. The SnS2 high photocurrent could be attributed to the small band gap and increase in grain size which can trap more incident light. Based on the results the SnS2 used as a buffer layer can be a good choice for an efficient photovoltaic device.</description><subject>Absorption spectra</subject><subject>Atomic force microscopy</subject><subject>Buffer layer</subject><subject>Buffer layers</subject><subject>Cadmium</subject><subject>Cadmium compounds</subject><subject>Cadmium sulfide</subject><subject>CdS</subject><subject>Characterization</subject><subject>Chemical composition</subject><subject>Comparative studies</subject><subject>Copper</subject><subject>Copper compounds</subject><subject>Copper indium gallium selenides</subject><subject>Copper zinc tin sulfide</subject><subject>Electron microscopy</subject><subject>Energy gap</subject><subject>Gallium</subject><subject>Grain size</subject><subject>Incident light</subject><subject>Indium</subject><subject>Microscopy</subject><subject>Optical and electrochemical analysis</subject><subject>Particle size</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photovoltaics</subject><subject>Roughness</subject><subject>Scanning electron microscopy</subject><subject>Selenide</subject><subject>SnS2</subject><subject>Solar energy</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Stoichiometry</subject><subject>Sulfides</subject><subject>Thin films</subject><subject>Tin</subject><subject>Tin disulfide</subject><subject>X-ray diffraction</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKxDAUDaLgOPoJQsCNs2jNo03alcjgCwZcjIIbCWlyiyl9jEk7MH9vhhncurpw7nlwDkLXlKSUUHHXpGFooQefMsJISoqUcHGCZjSTNKEsl6doRggvElKyz3N0EUJDCJW0kDP0tRy6jfZ6dFvAYZzsDg81rlyv_Q4bbTs3dThMbe0s4NulXS-w7i0eXY-t-8PX_Zot8Pgd0Wqqa_C41Tvw4RKd1boNcHW8c_Tx9Pi-fElWb8-vy4dVYjiXYyJyG6Mqm2koiOQWZJkzIXWVi1LrnAjGqNECoOSiolaYgpqcUNCCgal1wefo5uC78cPPBGFUzTD5PkYqluW8pFkpWGTlB5bxQwgearXxrotFFSVqv6Rq1HFJtV9SkULFJaPu_qCDWGHr4jcYB70B6zyYUdnB_ePwC1MNf1M</recordid><startdate>20200915</startdate><enddate>20200915</enddate><creator>Ullah, Shafi</creator><creator>Bouich, Amal</creator><creator>Ullah, Hanif</creator><creator>Mari, Bernabé</creator><creator>Mollar, Miguel</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-0001-419X</orcidid><orcidid>https://orcid.org/0000-0003-4315-0407</orcidid></search><sort><creationdate>20200915</creationdate><title>Comparative study of binary cadmium sulfide (CdS) and tin disulfide (SnS2) thin buffer layers</title><author>Ullah, Shafi ; Bouich, Amal ; Ullah, Hanif ; Mari, Bernabé ; Mollar, Miguel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-65dcadbd4ae8073de795267ab569aa506221ca6ee936b1d6c81c501ea62ecfa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Absorption spectra</topic><topic>Atomic force microscopy</topic><topic>Buffer layer</topic><topic>Buffer layers</topic><topic>Cadmium</topic><topic>Cadmium compounds</topic><topic>Cadmium sulfide</topic><topic>CdS</topic><topic>Characterization</topic><topic>Chemical composition</topic><topic>Comparative studies</topic><topic>Copper</topic><topic>Copper compounds</topic><topic>Copper indium gallium selenides</topic><topic>Copper zinc tin sulfide</topic><topic>Electron microscopy</topic><topic>Energy gap</topic><topic>Gallium</topic><topic>Grain size</topic><topic>Incident light</topic><topic>Indium</topic><topic>Microscopy</topic><topic>Optical and electrochemical analysis</topic><topic>Particle size</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photovoltaics</topic><topic>Roughness</topic><topic>Scanning electron microscopy</topic><topic>Selenide</topic><topic>SnS2</topic><topic>Solar energy</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Stoichiometry</topic><topic>Sulfides</topic><topic>Thin films</topic><topic>Tin</topic><topic>Tin disulfide</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ullah, Shafi</creatorcontrib><creatorcontrib>Bouich, Amal</creatorcontrib><creatorcontrib>Ullah, Hanif</creatorcontrib><creatorcontrib>Mari, Bernabé</creatorcontrib><creatorcontrib>Mollar, Miguel</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ullah, Shafi</au><au>Bouich, Amal</au><au>Ullah, Hanif</au><au>Mari, Bernabé</au><au>Mollar, Miguel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative study of binary cadmium sulfide (CdS) and tin disulfide (SnS2) thin buffer layers</atitle><jtitle>Solar energy</jtitle><date>2020-09-15</date><risdate>2020</risdate><volume>208</volume><spage>637</spage><epage>642</epage><pages>637-642</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>[Display omitted] •Binary CdS and SnS2 were prepared via CBD and Hydrothermal procedures, respectively.•XRD diffraction peaks of CdS and SnS2 thin films are confirmed polycrystalline nature.•The surface homogeneity of SnS2 exhibit big grains and coalescence than CdS thin films.•The resultant band gaps to be 2.45 eV, 2.20 eV for SnS2 and CdS thin films, respectively.•A remarkable photocurrent (140 µA/ cm2) observed for SnS2 as compare to CdS (80 µA/ cm2) thin films. Binary compound tin disulfide (SnS2) and cadmium sulfide (CdS) are the potential candidates used as a buffer layer for copper indium gallium selenide (CIGS) and copper zinc tin sulfide (CZTS) thin-film device. Herein, both compounds have been successfully prepared through simple hydrothermal (HD) and chemical bath deposition (CBD) techniques, respectively. The prepared samples were characterized by different available techniques like X-ray diffraction (XRD), atomic force microscopy (AFM), surface electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmittance electrons microscopy (TEM), UV–Visible spectroscopy and photoelectrochemical (PEC) analysis. The XRD analysis confirms the polycrystalline nature of the prepared thin films. AFM analysis showed that the SnS2 display better roughness (60 nm), grain size (75 nm) than CdS roughness (23 nm), grain size (41 nm) thin films. SEM and EDS studies revealed near stoichiometry behavior of elemental composition of the films. The optical absorption spectrum showed the direct bandgap of CdS 2.45 eV and 2.20 eV for SnS2 thin films. The PEC analysis revealed that the SnS2 thin films exhibit two times higher photoresponse (140 µA) as compare to CdS (80 µA) thin films. The SnS2 high photocurrent could be attributed to the small band gap and increase in grain size which can trap more incident light. Based on the results the SnS2 used as a buffer layer can be a good choice for an efficient photovoltaic device.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2020.08.036</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0001-419X</orcidid><orcidid>https://orcid.org/0000-0003-4315-0407</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2020-09, Vol.208, p.637-642
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_journals_2453914962
source Access via ScienceDirect (Elsevier)
subjects Absorption spectra
Atomic force microscopy
Buffer layer
Buffer layers
Cadmium
Cadmium compounds
Cadmium sulfide
CdS
Characterization
Chemical composition
Comparative studies
Copper
Copper compounds
Copper indium gallium selenides
Copper zinc tin sulfide
Electron microscopy
Energy gap
Gallium
Grain size
Incident light
Indium
Microscopy
Optical and electrochemical analysis
Particle size
Photoelectric effect
Photoelectric emission
Photovoltaics
Roughness
Scanning electron microscopy
Selenide
SnS2
Solar energy
Spectroscopy
Spectrum analysis
Stoichiometry
Sulfides
Thin films
Tin
Tin disulfide
X-ray diffraction
title Comparative study of binary cadmium sulfide (CdS) and tin disulfide (SnS2) thin buffer layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20study%20of%20binary%20cadmium%20sulfide%20(CdS)%20and%20tin%20disulfide%20(SnS2)%20thin%20buffer%20layers&rft.jtitle=Solar%20energy&rft.au=Ullah,%20Shafi&rft.date=2020-09-15&rft.volume=208&rft.spage=637&rft.epage=642&rft.pages=637-642&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2020.08.036&rft_dat=%3Cproquest_cross%3E2453914962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453914962&rft_id=info:pmid/&rft_els_id=S0038092X20308756&rfr_iscdi=true