Application of deep learning and image feature retrieval in E-commerce transaction and customer management

The huge amount of digital image data in e-commerce transactions brings serious problems to the rapid retrieval and storage of images. Image hashing technology can convert image data of arbitrary resolution into a binary code sequence of tens or hundreds of bits through a hash function. In view of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2020-01, Vol.39 (4), p.5953-5964
1. Verfasser: Ning, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5964
container_issue 4
container_start_page 5953
container_title Journal of intelligent & fuzzy systems
container_volume 39
creator Ning, Lei
description The huge amount of digital image data in e-commerce transactions brings serious problems to the rapid retrieval and storage of images. Image hashing technology can convert image data of arbitrary resolution into a binary code sequence of tens or hundreds of bits through a hash function. In view of this, based on the image content characteristics, this study improved the traditional hash function and proposed a hash method based on bilateral random projection. At the same time, the projection vectors are acquired in the low-rank sparse decomposition process of the image data matrix, and the projection vectors are group orthogonalized. In addition, this study designed contrast test to carry out research and analysis on the effectiveness of the algorithm. The results show that the proposed algorithm works well and can be applied to practice and can provide theoretical reference for subsequent related research.
doi_str_mv 10.3233/JIFS-189069
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2453736712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2453736712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-e1a50a88b1560d075ca9a58857011a2e010209325bcf7619c5514c2d308e4c8f3</originalsourceid><addsrcrecordid>eNotkMFOwzAQRC0EEqVw4gcscUQBrx3HzrGqChRV4gCco62zqVI1TrAdJP6elHLalXZmVvMYuwXxoKRSj6_rp_cMbCmK8ozNwBqd2bIw59MuijwDmReX7CrGvRBgtBQztl8Mw6F1mNre877hNdHAD4TBt37H0de87XBHvCFMYyAeKIWWvvHAW89Xmeu7joIjngL6iO4v5uhyY0z9dOId-snfkU_X7KLBQ6Sb_zlnn0-rj-VLtnl7Xi8Xm8xJKFNGgFqgtVvQhaiF0Q5L1NZqIwBQkgAhRamk3rrGFFA6rSF3slbCUu5so-bs7pQ7hP5rpJiqfT8GP72sZK6VUYUBOanuTyoX-hgDNdUQpqrhpwJRHWFWR5jVCab6BQyFZyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453736712</pqid></control><display><type>article</type><title>Application of deep learning and image feature retrieval in E-commerce transaction and customer management</title><source>EBSCOhost Business Source Complete</source><creator>Ning, Lei</creator><contributor>Kolivand, Hoshang ; Ramachandran, Varatharajan ; Balas, Valentina E. ; Paul, Anand</contributor><creatorcontrib>Ning, Lei ; Kolivand, Hoshang ; Ramachandran, Varatharajan ; Balas, Valentina E. ; Paul, Anand</creatorcontrib><description>The huge amount of digital image data in e-commerce transactions brings serious problems to the rapid retrieval and storage of images. Image hashing technology can convert image data of arbitrary resolution into a binary code sequence of tens or hundreds of bits through a hash function. In view of this, based on the image content characteristics, this study improved the traditional hash function and proposed a hash method based on bilateral random projection. At the same time, the projection vectors are acquired in the low-rank sparse decomposition process of the image data matrix, and the projection vectors are group orthogonalized. In addition, this study designed contrast test to carry out research and analysis on the effectiveness of the algorithm. The results show that the proposed algorithm works well and can be applied to practice and can provide theoretical reference for subsequent related research.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-189069</identifier><language>eng</language><publisher>Amsterdam: IOS Press BV</publisher><subject>Binary codes ; Deep learning ; Digital imaging ; Electronic commerce ; Hash based algorithms ; Image acquisition ; Mathematical analysis ; Matrix algebra ; Matrix methods ; Projection ; Retrieval</subject><ispartof>Journal of intelligent &amp; fuzzy systems, 2020-01, Vol.39 (4), p.5953-5964</ispartof><rights>Copyright IOS Press BV 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-e1a50a88b1560d075ca9a58857011a2e010209325bcf7619c5514c2d308e4c8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Kolivand, Hoshang</contributor><contributor>Ramachandran, Varatharajan</contributor><contributor>Balas, Valentina E.</contributor><contributor>Paul, Anand</contributor><creatorcontrib>Ning, Lei</creatorcontrib><title>Application of deep learning and image feature retrieval in E-commerce transaction and customer management</title><title>Journal of intelligent &amp; fuzzy systems</title><description>The huge amount of digital image data in e-commerce transactions brings serious problems to the rapid retrieval and storage of images. Image hashing technology can convert image data of arbitrary resolution into a binary code sequence of tens or hundreds of bits through a hash function. In view of this, based on the image content characteristics, this study improved the traditional hash function and proposed a hash method based on bilateral random projection. At the same time, the projection vectors are acquired in the low-rank sparse decomposition process of the image data matrix, and the projection vectors are group orthogonalized. In addition, this study designed contrast test to carry out research and analysis on the effectiveness of the algorithm. The results show that the proposed algorithm works well and can be applied to practice and can provide theoretical reference for subsequent related research.</description><subject>Binary codes</subject><subject>Deep learning</subject><subject>Digital imaging</subject><subject>Electronic commerce</subject><subject>Hash based algorithms</subject><subject>Image acquisition</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Matrix methods</subject><subject>Projection</subject><subject>Retrieval</subject><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkMFOwzAQRC0EEqVw4gcscUQBrx3HzrGqChRV4gCco62zqVI1TrAdJP6elHLalXZmVvMYuwXxoKRSj6_rp_cMbCmK8ozNwBqd2bIw59MuijwDmReX7CrGvRBgtBQztl8Mw6F1mNre877hNdHAD4TBt37H0de87XBHvCFMYyAeKIWWvvHAW89Xmeu7joIjngL6iO4v5uhyY0z9dOId-snfkU_X7KLBQ6Sb_zlnn0-rj-VLtnl7Xi8Xm8xJKFNGgFqgtVvQhaiF0Q5L1NZqIwBQkgAhRamk3rrGFFA6rSF3slbCUu5so-bs7pQ7hP5rpJiqfT8GP72sZK6VUYUBOanuTyoX-hgDNdUQpqrhpwJRHWFWR5jVCab6BQyFZyA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Ning, Lei</creator><general>IOS Press BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200101</creationdate><title>Application of deep learning and image feature retrieval in E-commerce transaction and customer management</title><author>Ning, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-e1a50a88b1560d075ca9a58857011a2e010209325bcf7619c5514c2d308e4c8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Binary codes</topic><topic>Deep learning</topic><topic>Digital imaging</topic><topic>Electronic commerce</topic><topic>Hash based algorithms</topic><topic>Image acquisition</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Matrix methods</topic><topic>Projection</topic><topic>Retrieval</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ning, Lei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ning, Lei</au><au>Kolivand, Hoshang</au><au>Ramachandran, Varatharajan</au><au>Balas, Valentina E.</au><au>Paul, Anand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of deep learning and image feature retrieval in E-commerce transaction and customer management</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>39</volume><issue>4</issue><spage>5953</spage><epage>5964</epage><pages>5953-5964</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>The huge amount of digital image data in e-commerce transactions brings serious problems to the rapid retrieval and storage of images. Image hashing technology can convert image data of arbitrary resolution into a binary code sequence of tens or hundreds of bits through a hash function. In view of this, based on the image content characteristics, this study improved the traditional hash function and proposed a hash method based on bilateral random projection. At the same time, the projection vectors are acquired in the low-rank sparse decomposition process of the image data matrix, and the projection vectors are group orthogonalized. In addition, this study designed contrast test to carry out research and analysis on the effectiveness of the algorithm. The results show that the proposed algorithm works well and can be applied to practice and can provide theoretical reference for subsequent related research.</abstract><cop>Amsterdam</cop><pub>IOS Press BV</pub><doi>10.3233/JIFS-189069</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2020-01, Vol.39 (4), p.5953-5964
issn 1064-1246
1875-8967
language eng
recordid cdi_proquest_journals_2453736712
source EBSCOhost Business Source Complete
subjects Binary codes
Deep learning
Digital imaging
Electronic commerce
Hash based algorithms
Image acquisition
Mathematical analysis
Matrix algebra
Matrix methods
Projection
Retrieval
title Application of deep learning and image feature retrieval in E-commerce transaction and customer management
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T13%3A37%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20deep%20learning%20and%20image%20feature%20retrieval%20in%20E-commerce%20transaction%20and%20customer%20management&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Ning,%20Lei&rft.date=2020-01-01&rft.volume=39&rft.issue=4&rft.spage=5953&rft.epage=5964&rft.pages=5953-5964&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-189069&rft_dat=%3Cproquest_cross%3E2453736712%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453736712&rft_id=info:pmid/&rfr_iscdi=true