Application of deep learning and image feature retrieval in E-commerce transaction and customer management
The huge amount of digital image data in e-commerce transactions brings serious problems to the rapid retrieval and storage of images. Image hashing technology can convert image data of arbitrary resolution into a binary code sequence of tens or hundreds of bits through a hash function. In view of t...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2020-01, Vol.39 (4), p.5953-5964 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The huge amount of digital image data in e-commerce transactions brings serious problems to the rapid retrieval and storage of images. Image hashing technology can convert image data of arbitrary resolution into a binary code sequence of tens or hundreds of bits through a hash function. In view of this, based on the image content characteristics, this study improved the traditional hash function and proposed a hash method based on bilateral random projection. At the same time, the projection vectors are acquired in the low-rank sparse decomposition process of the image data matrix, and the projection vectors are group orthogonalized. In addition, this study designed contrast test to carry out research and analysis on the effectiveness of the algorithm. The results show that the proposed algorithm works well and can be applied to practice and can provide theoretical reference for subsequent related research. |
---|---|
ISSN: | 1064-1246 1875-8967 |
DOI: | 10.3233/JIFS-189069 |