A Quadral-Fuzzy control approach to flight formation by a fleet of unmanned aerial vehicles
This paper addresses the control of a fleet of unmanned aerial systems (UAVs), termed as drones, for flight formation problems. Getting drones to fly in formation is a relevant problem to be solved when cooperative cargo transportation is desired. A general approach for this problem considers the co...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020-01, Vol.8, p.1-1 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper addresses the control of a fleet of unmanned aerial systems (UAVs), termed as drones, for flight formation problems. Getting drones to fly in formation is a relevant problem to be solved when cooperative cargo transportation is desired. A general approach for this problem considers the coordination of a fleet of UAVs, by fusing all information coming from several individual sensors posed on each UAVs. However, this approach induces a high cost as every UAV should have its advanced perception system. As an alternative, this paper proposes the use of a single perception system by a fleet composed of several elementary drones (workers) with primitive low-cost sensors and a leader drone carrying a 3D perception source. We propose a Quadral-Fuzzy approach to ensure that all drones fly in formation and will not collide with each other or with environment obstacles. We also develop a new way to compute potential fields based on possibility fuzzy (fuzziness) measure with the focus of avoiding collisions between the drones. The proposed approach encompasses four high-coupled intelligent controllers that respectively control the leader and worker drones' motion and implement obstacle and collision avoidance procedures. Simulation results using a fleet of four aerial drones are presented, showing the potential for solving usual problems to flights in formation, such as dodging obstacles, avoiding collisions between the drones, among others. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.2985032 |