On split graphs with four distinct eigenvalues

It is a well-known fact that a graph of diameter d has at least d+1 eigenvalues. A graph is d-extremal, if it has diameter d and exactly d+1 eigenvalues. A graph is split if its vertex set can be partitioned into a clique and a stable set. Such graphs have diameter at most 3. We obtain a complete cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2020-04, Vol.277, p.163-171
Hauptverfasser: Goldberg, Felix, Kirkland, Steve, Varghese, Anu, Vijayakumar, Ambat
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is a well-known fact that a graph of diameter d has at least d+1 eigenvalues. A graph is d-extremal, if it has diameter d and exactly d+1 eigenvalues. A graph is split if its vertex set can be partitioned into a clique and a stable set. Such graphs have diameter at most 3. We obtain a complete classification of the connected bidegreed 3-extremal split graphs using the association of split graphs with combinatorial designs. We also construct certain families of non-bidegreed 3-extremal split graphs.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2019.09.016