DP-4-colorability of planar graphs without adjacent cycles of given length

DP-coloring (also known as correspondence coloring) is a generalization of list coloring introduced recently by Dvořák and Postle (2017). Kim and Ozeki proved that planar graphs without k-cycles where k=3,4,5, or 6 are DP-4-colorable. In this paper, we prove that every planar graph G without k-cycle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2020-04, Vol.277, p.245-251
Hauptverfasser: Liu, Runrun, Li, Xiangwen, Nakprasit, Kittikorn, Sittitrai, Pongpat, Yu, Gexin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:DP-coloring (also known as correspondence coloring) is a generalization of list coloring introduced recently by Dvořák and Postle (2017). Kim and Ozeki proved that planar graphs without k-cycles where k=3,4,5, or 6 are DP-4-colorable. In this paper, we prove that every planar graph G without k-cycles adjacent to triangles is DP-4-colorable for k=5,6, which implies that every planar graph G without k-cycles adjacent to triangles is 4-choosable for k=5,6. This extends the result of Kim and Ozeki on 3-, 5-, and 6-cycles.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2019.09.012