Invariance, Causality and Robustness

We discuss recent work for causal inference and predictive robustness in a unifying way. The key idea relies on a notion of probabilistic invariance or stability: it opens up new insights for formulating causality as a certain risk minimization problem with a corresponding notion of robustness. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical science 2020-08, Vol.35 (3), p.404-426
1. Verfasser: Bühlmann, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss recent work for causal inference and predictive robustness in a unifying way. The key idea relies on a notion of probabilistic invariance or stability: it opens up new insights for formulating causality as a certain risk minimization problem with a corresponding notion of robustness. The invariance itself can be estimated from general heterogeneous or perturbation data which frequently occur with nowadays data collection. The novel methodology is potentially useful in many applications, offering more robustness and better "causal-oriented" interpretation than machine learning or estimation in standard regression or classification frameworks.
ISSN:0883-4237
2168-8745
DOI:10.1214/19-STS721