Blow-up of semi-discrete solution of a nonlinear parabolic equation with gradient term

This paper is concerned with approximation of blow-up phenomena in nonlinear parabolic problems. We consider the equation u_t = u_xx +|u|^p -b(x)|u_x|^q in a bounded domain, we study the behavior of the semidiscrete problem. Under some assumptions we show existence and unicity of the semidiscrete so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-10
Hauptverfasser: Houda Hani, Khenissi, Moez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with approximation of blow-up phenomena in nonlinear parabolic problems. We consider the equation u_t = u_xx +|u|^p -b(x)|u_x|^q in a bounded domain, we study the behavior of the semidiscrete problem. Under some assumptions we show existence and unicity of the semidiscrete solution, we show that it blows up in a finite time and we prove the convergence of the semidiscrete problem. Finally, we give an approximation of the blow up rate and the blow up time of the semidiscrete solution
ISSN:2331-8422