Are Multiple Cross-Correlation Identities better than just Two? Improving the Estimate of Time Differences-of-Arrivals from Blind Audio Signals

Given an unknown audio source, the estimation of time differences-of-arrivals (TDOAs) can be efficiently and robustly solved using blind channel identification and exploiting the cross-correlation identity (CCI). Prior "blind" works have improved the estimate of TDOAs by means of different...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-10
Hauptverfasser: Greco, Danilo, Cavazza, Jacopo, Alessio Del Bue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given an unknown audio source, the estimation of time differences-of-arrivals (TDOAs) can be efficiently and robustly solved using blind channel identification and exploiting the cross-correlation identity (CCI). Prior "blind" works have improved the estimate of TDOAs by means of different algorithmic solutions and optimization strategies, while always sticking to the case N = 2 microphones. But what if we can obtain a direct improvement in performance by just increasing N? In this paper we try to investigate this direction, showing that, despite the arguable simplicity, this is capable of (sharply) improving upon state-of-the-art blind channel identification methods based on CCI, without modifying the computational pipeline. Inspired by our results, we seek to warm up the community and the practitioners by paving the way (with two concrete, yet preliminary, examples) towards joint approaches in which advances in the optimization are combined with an increased number of microphones, in order to achieve further improvements.
ISSN:2331-8422