Impact of oxygen vacancy on the ferroelectric properties of lanthanum-doped hafnium oxide

The discovery of ferroelectric properties in hafnium oxide has brought back the interest in the ferroelectric non-volatile memory as a possible alternative for low power consumption electronic memories. As far as real hafnium oxide-based materials have defects like oxygen vacancies, their presence m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2020-10, Vol.117 (16)
Hauptverfasser: Islamov, Damir R., Zalyalov, Timur M., Orlov, Oleg M., Gritsenko, Vladimir A., Krasnikov, Gennady Ya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The discovery of ferroelectric properties in hafnium oxide has brought back the interest in the ferroelectric non-volatile memory as a possible alternative for low power consumption electronic memories. As far as real hafnium oxide-based materials have defects like oxygen vacancies, their presence might affect the ferroelectric properties due to oxygen atom movements during repolarization processes. In this work, the transport experiments are combined with the modeling to study evolution of the oxygen vacancy concentration during the endurance and to determine the optimal defect density for a higher residual polarization in lanthanum-doped hafnium oxide.
ISSN:0003-6951
1077-3118
DOI:10.1063/5.0023554