Personal Credit Default Prediction Model Based on Convolution Neural Network

It has great significance for the healthy development of credit industry to control the credit default risk by using the information technology. For some traditional research about the credit default prediction model, more attention is paid to the model accuracy, while the business characteristics o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-10
Hauptverfasser: Zhou, Xiang, Jiang, Yefeng, Zhang, Wenyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 2020
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2020
creator Zhou, Xiang
Jiang, Yefeng
Zhang, Wenyu
description It has great significance for the healthy development of credit industry to control the credit default risk by using the information technology. For some traditional research about the credit default prediction model, more attention is paid to the model accuracy, while the business characteristics of the credit risk prevention are easy to be ignored. Meanwhile, to reduce the complicity of the model, the data features need be extracted manually, which will decrease the high-dimensional correlation among the analyzing data and then result in the low prediction performance of the model. So, in the paper, the CNN (convolutional neural network) is used to establish a personal credit default prediction model, and both ACC (accuracy) and AUC (the area under the ROC curve) are taken as the performance evaluation index of the model. Experimental results show the model ACC (accuracy) is above 95% and AUC (the area under the ROC curve) is above 99%, and the model performance is much better than the classical algorithm including the SVM (support vector machine), Bayes, and RF (random forest).
doi_str_mv 10.1155/2020/5608392
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451756933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451756933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-fef93ed0e9dd9014d3cb96a2d6228db1e522cce610da23ba088680c50fa72d163</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmNw44wqcYQyO2my9gjlUxpjB5C4VVnjio6yjKRl4t-T0UkcOdmv_NiSH8aOES4QpRxx4DCSClKR8R02QKlELDEZ74YeeBIjF6_77MD7BQBHiemATWbkvF3qJsodmbqNrqnSXdNGs00s29ouo0drqImutCcThZjb5Zdtut_RlDoXdqfUrq17P2R7lW48HW3rkL3c3jzn9_Hk6e4hv5zEpVDQxhVVmSADlBmTASZGlPNMaW4U56mZI0nOy5IUgtFczDWkqUqhlFDpMTeoxJCd9ndXzn525NtiYTsXnvAFTySOpcqECNR5T5XOeu-oKlau_tDuu0AoNr6Kja9i6yvgZz3-Vi-NXtf_0Sc9TYEJyv5ozBQoKX4APUZztA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451756933</pqid></control><display><type>article</type><title>Personal Credit Default Prediction Model Based on Convolution Neural Network</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Zhou, Xiang ; Jiang, Yefeng ; Zhang, Wenyu</creator><contributor>Renno, Carlo ; Carlo Renno</contributor><creatorcontrib>Zhou, Xiang ; Jiang, Yefeng ; Zhang, Wenyu ; Renno, Carlo ; Carlo Renno</creatorcontrib><description>It has great significance for the healthy development of credit industry to control the credit default risk by using the information technology. For some traditional research about the credit default prediction model, more attention is paid to the model accuracy, while the business characteristics of the credit risk prevention are easy to be ignored. Meanwhile, to reduce the complicity of the model, the data features need be extracted manually, which will decrease the high-dimensional correlation among the analyzing data and then result in the low prediction performance of the model. So, in the paper, the CNN (convolutional neural network) is used to establish a personal credit default prediction model, and both ACC (accuracy) and AUC (the area under the ROC curve) are taken as the performance evaluation index of the model. Experimental results show the model ACC (accuracy) is above 95% and AUC (the area under the ROC curve) is above 99%, and the model performance is much better than the classical algorithm including the SVM (support vector machine), Bayes, and RF (random forest).</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/5608392</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Artificial neural networks ; Convolution ; Correlation analysis ; Credit scoring ; Datasets ; Dimensional analysis ; Discriminant analysis ; Feature extraction ; Industrial development ; Interest rates ; Model accuracy ; Neural networks ; Performance evaluation ; Prediction models ; Principal components analysis ; Risk management ; Support vector machines</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-10</ispartof><rights>Copyright © 2020 Xiang Zhou et al.</rights><rights>Copyright © 2020 Xiang Zhou et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-fef93ed0e9dd9014d3cb96a2d6228db1e522cce610da23ba088680c50fa72d163</citedby><cites>FETCH-LOGICAL-c360t-fef93ed0e9dd9014d3cb96a2d6228db1e522cce610da23ba088680c50fa72d163</cites><orcidid>0000-0001-6862-3552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><contributor>Renno, Carlo</contributor><contributor>Carlo Renno</contributor><creatorcontrib>Zhou, Xiang</creatorcontrib><creatorcontrib>Jiang, Yefeng</creatorcontrib><creatorcontrib>Zhang, Wenyu</creatorcontrib><title>Personal Credit Default Prediction Model Based on Convolution Neural Network</title><title>Mathematical problems in engineering</title><description>It has great significance for the healthy development of credit industry to control the credit default risk by using the information technology. For some traditional research about the credit default prediction model, more attention is paid to the model accuracy, while the business characteristics of the credit risk prevention are easy to be ignored. Meanwhile, to reduce the complicity of the model, the data features need be extracted manually, which will decrease the high-dimensional correlation among the analyzing data and then result in the low prediction performance of the model. So, in the paper, the CNN (convolutional neural network) is used to establish a personal credit default prediction model, and both ACC (accuracy) and AUC (the area under the ROC curve) are taken as the performance evaluation index of the model. Experimental results show the model ACC (accuracy) is above 95% and AUC (the area under the ROC curve) is above 99%, and the model performance is much better than the classical algorithm including the SVM (support vector machine), Bayes, and RF (random forest).</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>Correlation analysis</subject><subject>Credit scoring</subject><subject>Datasets</subject><subject>Dimensional analysis</subject><subject>Discriminant analysis</subject><subject>Feature extraction</subject><subject>Industrial development</subject><subject>Interest rates</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Prediction models</subject><subject>Principal components analysis</subject><subject>Risk management</subject><subject>Support vector machines</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE1PwzAMhiMEEmNw44wqcYQyO2my9gjlUxpjB5C4VVnjio6yjKRl4t-T0UkcOdmv_NiSH8aOES4QpRxx4DCSClKR8R02QKlELDEZ74YeeBIjF6_77MD7BQBHiemATWbkvF3qJsodmbqNrqnSXdNGs00s29ouo0drqImutCcThZjb5Zdtut_RlDoXdqfUrq17P2R7lW48HW3rkL3c3jzn9_Hk6e4hv5zEpVDQxhVVmSADlBmTASZGlPNMaW4U56mZI0nOy5IUgtFczDWkqUqhlFDpMTeoxJCd9ndXzn525NtiYTsXnvAFTySOpcqECNR5T5XOeu-oKlau_tDuu0AoNr6Kja9i6yvgZz3-Vi-NXtf_0Sc9TYEJyv5ozBQoKX4APUZztA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhou, Xiang</creator><creator>Jiang, Yefeng</creator><creator>Zhang, Wenyu</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6862-3552</orcidid></search><sort><creationdate>2020</creationdate><title>Personal Credit Default Prediction Model Based on Convolution Neural Network</title><author>Zhou, Xiang ; Jiang, Yefeng ; Zhang, Wenyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-fef93ed0e9dd9014d3cb96a2d6228db1e522cce610da23ba088680c50fa72d163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>Correlation analysis</topic><topic>Credit scoring</topic><topic>Datasets</topic><topic>Dimensional analysis</topic><topic>Discriminant analysis</topic><topic>Feature extraction</topic><topic>Industrial development</topic><topic>Interest rates</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Prediction models</topic><topic>Principal components analysis</topic><topic>Risk management</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiang</creatorcontrib><creatorcontrib>Jiang, Yefeng</creatorcontrib><creatorcontrib>Zhang, Wenyu</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xiang</au><au>Jiang, Yefeng</au><au>Zhang, Wenyu</au><au>Renno, Carlo</au><au>Carlo Renno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Personal Credit Default Prediction Model Based on Convolution Neural Network</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>It has great significance for the healthy development of credit industry to control the credit default risk by using the information technology. For some traditional research about the credit default prediction model, more attention is paid to the model accuracy, while the business characteristics of the credit risk prevention are easy to be ignored. Meanwhile, to reduce the complicity of the model, the data features need be extracted manually, which will decrease the high-dimensional correlation among the analyzing data and then result in the low prediction performance of the model. So, in the paper, the CNN (convolutional neural network) is used to establish a personal credit default prediction model, and both ACC (accuracy) and AUC (the area under the ROC curve) are taken as the performance evaluation index of the model. Experimental results show the model ACC (accuracy) is above 95% and AUC (the area under the ROC curve) is above 99%, and the model performance is much better than the classical algorithm including the SVM (support vector machine), Bayes, and RF (random forest).</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/5608392</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6862-3552</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-10
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_journals_2451756933
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection
subjects Algorithms
Artificial neural networks
Convolution
Correlation analysis
Credit scoring
Datasets
Dimensional analysis
Discriminant analysis
Feature extraction
Industrial development
Interest rates
Model accuracy
Neural networks
Performance evaluation
Prediction models
Principal components analysis
Risk management
Support vector machines
title Personal Credit Default Prediction Model Based on Convolution Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Personal%20Credit%20Default%20Prediction%20Model%20Based%20on%20Convolution%20Neural%20Network&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zhou,%20Xiang&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/5608392&rft_dat=%3Cproquest_cross%3E2451756933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451756933&rft_id=info:pmid/&rfr_iscdi=true