Personal Credit Default Prediction Model Based on Convolution Neural Network
It has great significance for the healthy development of credit industry to control the credit default risk by using the information technology. For some traditional research about the credit default prediction model, more attention is paid to the model accuracy, while the business characteristics o...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 2020 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2020 |
creator | Zhou, Xiang Jiang, Yefeng Zhang, Wenyu |
description | It has great significance for the healthy development of credit industry to control the credit default risk by using the information technology. For some traditional research about the credit default prediction model, more attention is paid to the model accuracy, while the business characteristics of the credit risk prevention are easy to be ignored. Meanwhile, to reduce the complicity of the model, the data features need be extracted manually, which will decrease the high-dimensional correlation among the analyzing data and then result in the low prediction performance of the model. So, in the paper, the CNN (convolutional neural network) is used to establish a personal credit default prediction model, and both ACC (accuracy) and AUC (the area under the ROC curve) are taken as the performance evaluation index of the model. Experimental results show the model ACC (accuracy) is above 95% and AUC (the area under the ROC curve) is above 99%, and the model performance is much better than the classical algorithm including the SVM (support vector machine), Bayes, and RF (random forest). |
doi_str_mv | 10.1155/2020/5608392 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451756933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451756933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-fef93ed0e9dd9014d3cb96a2d6228db1e522cce610da23ba088680c50fa72d163</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmNw44wqcYQyO2my9gjlUxpjB5C4VVnjio6yjKRl4t-T0UkcOdmv_NiSH8aOES4QpRxx4DCSClKR8R02QKlELDEZ74YeeBIjF6_77MD7BQBHiemATWbkvF3qJsodmbqNrqnSXdNGs00s29ouo0drqImutCcThZjb5Zdtut_RlDoXdqfUrq17P2R7lW48HW3rkL3c3jzn9_Hk6e4hv5zEpVDQxhVVmSADlBmTASZGlPNMaW4U56mZI0nOy5IUgtFczDWkqUqhlFDpMTeoxJCd9ndXzn525NtiYTsXnvAFTySOpcqECNR5T5XOeu-oKlau_tDuu0AoNr6Kja9i6yvgZz3-Vi-NXtf_0Sc9TYEJyv5ozBQoKX4APUZztA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451756933</pqid></control><display><type>article</type><title>Personal Credit Default Prediction Model Based on Convolution Neural Network</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Zhou, Xiang ; Jiang, Yefeng ; Zhang, Wenyu</creator><contributor>Renno, Carlo ; Carlo Renno</contributor><creatorcontrib>Zhou, Xiang ; Jiang, Yefeng ; Zhang, Wenyu ; Renno, Carlo ; Carlo Renno</creatorcontrib><description>It has great significance for the healthy development of credit industry to control the credit default risk by using the information technology. For some traditional research about the credit default prediction model, more attention is paid to the model accuracy, while the business characteristics of the credit risk prevention are easy to be ignored. Meanwhile, to reduce the complicity of the model, the data features need be extracted manually, which will decrease the high-dimensional correlation among the analyzing data and then result in the low prediction performance of the model. So, in the paper, the CNN (convolutional neural network) is used to establish a personal credit default prediction model, and both ACC (accuracy) and AUC (the area under the ROC curve) are taken as the performance evaluation index of the model. Experimental results show the model ACC (accuracy) is above 95% and AUC (the area under the ROC curve) is above 99%, and the model performance is much better than the classical algorithm including the SVM (support vector machine), Bayes, and RF (random forest).</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2020/5608392</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Artificial neural networks ; Convolution ; Correlation analysis ; Credit scoring ; Datasets ; Dimensional analysis ; Discriminant analysis ; Feature extraction ; Industrial development ; Interest rates ; Model accuracy ; Neural networks ; Performance evaluation ; Prediction models ; Principal components analysis ; Risk management ; Support vector machines</subject><ispartof>Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-10</ispartof><rights>Copyright © 2020 Xiang Zhou et al.</rights><rights>Copyright © 2020 Xiang Zhou et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-fef93ed0e9dd9014d3cb96a2d6228db1e522cce610da23ba088680c50fa72d163</citedby><cites>FETCH-LOGICAL-c360t-fef93ed0e9dd9014d3cb96a2d6228db1e522cce610da23ba088680c50fa72d163</cites><orcidid>0000-0001-6862-3552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><contributor>Renno, Carlo</contributor><contributor>Carlo Renno</contributor><creatorcontrib>Zhou, Xiang</creatorcontrib><creatorcontrib>Jiang, Yefeng</creatorcontrib><creatorcontrib>Zhang, Wenyu</creatorcontrib><title>Personal Credit Default Prediction Model Based on Convolution Neural Network</title><title>Mathematical problems in engineering</title><description>It has great significance for the healthy development of credit industry to control the credit default risk by using the information technology. For some traditional research about the credit default prediction model, more attention is paid to the model accuracy, while the business characteristics of the credit risk prevention are easy to be ignored. Meanwhile, to reduce the complicity of the model, the data features need be extracted manually, which will decrease the high-dimensional correlation among the analyzing data and then result in the low prediction performance of the model. So, in the paper, the CNN (convolutional neural network) is used to establish a personal credit default prediction model, and both ACC (accuracy) and AUC (the area under the ROC curve) are taken as the performance evaluation index of the model. Experimental results show the model ACC (accuracy) is above 95% and AUC (the area under the ROC curve) is above 99%, and the model performance is much better than the classical algorithm including the SVM (support vector machine), Bayes, and RF (random forest).</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Convolution</subject><subject>Correlation analysis</subject><subject>Credit scoring</subject><subject>Datasets</subject><subject>Dimensional analysis</subject><subject>Discriminant analysis</subject><subject>Feature extraction</subject><subject>Industrial development</subject><subject>Interest rates</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Prediction models</subject><subject>Principal components analysis</subject><subject>Risk management</subject><subject>Support vector machines</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkE1PwzAMhiMEEmNw44wqcYQyO2my9gjlUxpjB5C4VVnjio6yjKRl4t-T0UkcOdmv_NiSH8aOES4QpRxx4DCSClKR8R02QKlELDEZ74YeeBIjF6_77MD7BQBHiemATWbkvF3qJsodmbqNrqnSXdNGs00s29ouo0drqImutCcThZjb5Zdtut_RlDoXdqfUrq17P2R7lW48HW3rkL3c3jzn9_Hk6e4hv5zEpVDQxhVVmSADlBmTASZGlPNMaW4U56mZI0nOy5IUgtFczDWkqUqhlFDpMTeoxJCd9ndXzn525NtiYTsXnvAFTySOpcqECNR5T5XOeu-oKlau_tDuu0AoNr6Kja9i6yvgZz3-Vi-NXtf_0Sc9TYEJyv5ozBQoKX4APUZztA</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Zhou, Xiang</creator><creator>Jiang, Yefeng</creator><creator>Zhang, Wenyu</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6862-3552</orcidid></search><sort><creationdate>2020</creationdate><title>Personal Credit Default Prediction Model Based on Convolution Neural Network</title><author>Zhou, Xiang ; Jiang, Yefeng ; Zhang, Wenyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-fef93ed0e9dd9014d3cb96a2d6228db1e522cce610da23ba088680c50fa72d163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Convolution</topic><topic>Correlation analysis</topic><topic>Credit scoring</topic><topic>Datasets</topic><topic>Dimensional analysis</topic><topic>Discriminant analysis</topic><topic>Feature extraction</topic><topic>Industrial development</topic><topic>Interest rates</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Prediction models</topic><topic>Principal components analysis</topic><topic>Risk management</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xiang</creatorcontrib><creatorcontrib>Jiang, Yefeng</creatorcontrib><creatorcontrib>Zhang, Wenyu</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xiang</au><au>Jiang, Yefeng</au><au>Zhang, Wenyu</au><au>Renno, Carlo</au><au>Carlo Renno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Personal Credit Default Prediction Model Based on Convolution Neural Network</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>It has great significance for the healthy development of credit industry to control the credit default risk by using the information technology. For some traditional research about the credit default prediction model, more attention is paid to the model accuracy, while the business characteristics of the credit risk prevention are easy to be ignored. Meanwhile, to reduce the complicity of the model, the data features need be extracted manually, which will decrease the high-dimensional correlation among the analyzing data and then result in the low prediction performance of the model. So, in the paper, the CNN (convolutional neural network) is used to establish a personal credit default prediction model, and both ACC (accuracy) and AUC (the area under the ROC curve) are taken as the performance evaluation index of the model. Experimental results show the model ACC (accuracy) is above 95% and AUC (the area under the ROC curve) is above 99%, and the model performance is much better than the classical algorithm including the SVM (support vector machine), Bayes, and RF (random forest).</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2020/5608392</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6862-3552</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2020, Vol.2020 (2020), p.1-10 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2451756933 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection |
subjects | Algorithms Artificial neural networks Convolution Correlation analysis Credit scoring Datasets Dimensional analysis Discriminant analysis Feature extraction Industrial development Interest rates Model accuracy Neural networks Performance evaluation Prediction models Principal components analysis Risk management Support vector machines |
title | Personal Credit Default Prediction Model Based on Convolution Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A29%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Personal%20Credit%20Default%20Prediction%20Model%20Based%20on%20Convolution%20Neural%20Network&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Zhou,%20Xiang&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2020/5608392&rft_dat=%3Cproquest_cross%3E2451756933%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451756933&rft_id=info:pmid/&rfr_iscdi=true |