Personal Credit Default Prediction Model Based on Convolution Neural Network

It has great significance for the healthy development of credit industry to control the credit default risk by using the information technology. For some traditional research about the credit default prediction model, more attention is paid to the model accuracy, while the business characteristics o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-10
Hauptverfasser: Zhou, Xiang, Jiang, Yefeng, Zhang, Wenyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has great significance for the healthy development of credit industry to control the credit default risk by using the information technology. For some traditional research about the credit default prediction model, more attention is paid to the model accuracy, while the business characteristics of the credit risk prevention are easy to be ignored. Meanwhile, to reduce the complicity of the model, the data features need be extracted manually, which will decrease the high-dimensional correlation among the analyzing data and then result in the low prediction performance of the model. So, in the paper, the CNN (convolutional neural network) is used to establish a personal credit default prediction model, and both ACC (accuracy) and AUC (the area under the ROC curve) are taken as the performance evaluation index of the model. Experimental results show the model ACC (accuracy) is above 95% and AUC (the area under the ROC curve) is above 99%, and the model performance is much better than the classical algorithm including the SVM (support vector machine), Bayes, and RF (random forest).
ISSN:1024-123X
1563-5147
DOI:10.1155/2020/5608392