On lexicographic representatives in braid monoids

The language of maximal lexicographic representatives of elements in the positive braid monoid A n with n generators is a regular language. We describe with great detail the smallest finite-state automaton accepting such language and study the proportion of elements of length k whose maximal lexicog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of algebraic combinatorics 2020-12, Vol.52 (4), p.561-597
Hauptverfasser: Flores, Ramón, González-Meneses, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 597
container_issue 4
container_start_page 561
container_title Journal of algebraic combinatorics
container_volume 52
creator Flores, Ramón
González-Meneses, Juan
description The language of maximal lexicographic representatives of elements in the positive braid monoid A n with n generators is a regular language. We describe with great detail the smallest finite-state automaton accepting such language and study the proportion of elements of length k whose maximal lexicographic representative finishes with the first generator. This proportion tends to some number P n , 1 , as k tends to infinity, and we show that P n , 1 ≥ 3 16 = 0.1875 for every n ≥ 1 . We also provide an explicit formula, based on the Fibonacci numbers, for the number of states of the automaton. Finally, we present the pseudocode of an algorithm which computes the adjacency matrix of the finite-state automaton.
doi_str_mv 10.1007/s10801-019-00913-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451546730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451546730</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-46b12f1ecc2ddb1aea8fbde0b47e651cfaa1b770502725ae118c49e23badf78b3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQR4MoWFe_gKeC5-hM2jTNURb_wcJe9BySdLpm2W1r0hX99lYrePM0l_d-A4-xS4RrBFA3CaEG5ICaA2gsuDpiGUoluEYtjlkGWkiua61P2VlKW5ioGmXGcN3lO_oIvt9EO7wGn0caIiXqRjuGd0p56HIXbWjyfd_1oUnn7KS1u0QXv3fBXu7vnpePfLV-eFrerrgvsBx5WTkULZL3omkcWrJ16xoCVyqqJPrWWnRKgQShhLSEWPtSkyicbVpVu2LBrubdIfZvB0qj2faH2E0vjSglyrJSBUyUmCkf-5QitWaIYW_jp0Ew32nMnMZMacxPGqMmqZilNMHdhuLf9D_WF8TSZvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451546730</pqid></control><display><type>article</type><title>On lexicographic representatives in braid monoids</title><source>SpringerNature Journals</source><creator>Flores, Ramón ; González-Meneses, Juan</creator><creatorcontrib>Flores, Ramón ; González-Meneses, Juan</creatorcontrib><description>The language of maximal lexicographic representatives of elements in the positive braid monoid A n with n generators is a regular language. We describe with great detail the smallest finite-state automaton accepting such language and study the proportion of elements of length k whose maximal lexicographic representative finishes with the first generator. This proportion tends to some number P n , 1 , as k tends to infinity, and we show that P n , 1 ≥ 3 16 = 0.1875 for every n ≥ 1 . We also provide an explicit formula, based on the Fibonacci numbers, for the number of states of the automaton. Finally, we present the pseudocode of an algorithm which computes the adjacency matrix of the finite-state automaton.</description><identifier>ISSN: 0925-9899</identifier><identifier>EISSN: 1572-9192</identifier><identifier>DOI: 10.1007/s10801-019-00913-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Braiding ; Combinatorics ; Computer Science ; Convex and Discrete Geometry ; Fibonacci numbers ; Finishes ; Group Theory and Generalizations ; Lattices ; Mathematics ; Mathematics and Statistics ; Monoids ; Order ; Ordered Algebraic Structures</subject><ispartof>Journal of algebraic combinatorics, 2020-12, Vol.52 (4), p.561-597</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-46b12f1ecc2ddb1aea8fbde0b47e651cfaa1b770502725ae118c49e23badf78b3</cites><orcidid>0000-0002-2520-2755 ; 0000-0002-4315-9957</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10801-019-00913-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10801-019-00913-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Flores, Ramón</creatorcontrib><creatorcontrib>González-Meneses, Juan</creatorcontrib><title>On lexicographic representatives in braid monoids</title><title>Journal of algebraic combinatorics</title><addtitle>J Algebr Comb</addtitle><description>The language of maximal lexicographic representatives of elements in the positive braid monoid A n with n generators is a regular language. We describe with great detail the smallest finite-state automaton accepting such language and study the proportion of elements of length k whose maximal lexicographic representative finishes with the first generator. This proportion tends to some number P n , 1 , as k tends to infinity, and we show that P n , 1 ≥ 3 16 = 0.1875 for every n ≥ 1 . We also provide an explicit formula, based on the Fibonacci numbers, for the number of states of the automaton. Finally, we present the pseudocode of an algorithm which computes the adjacency matrix of the finite-state automaton.</description><subject>Algorithms</subject><subject>Braiding</subject><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Convex and Discrete Geometry</subject><subject>Fibonacci numbers</subject><subject>Finishes</subject><subject>Group Theory and Generalizations</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monoids</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><issn>0925-9899</issn><issn>1572-9192</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQR4MoWFe_gKeC5-hM2jTNURb_wcJe9BySdLpm2W1r0hX99lYrePM0l_d-A4-xS4RrBFA3CaEG5ICaA2gsuDpiGUoluEYtjlkGWkiua61P2VlKW5ioGmXGcN3lO_oIvt9EO7wGn0caIiXqRjuGd0p56HIXbWjyfd_1oUnn7KS1u0QXv3fBXu7vnpePfLV-eFrerrgvsBx5WTkULZL3omkcWrJ16xoCVyqqJPrWWnRKgQShhLSEWPtSkyicbVpVu2LBrubdIfZvB0qj2faH2E0vjSglyrJSBUyUmCkf-5QitWaIYW_jp0Ew32nMnMZMacxPGqMmqZilNMHdhuLf9D_WF8TSZvg</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Flores, Ramón</creator><creator>González-Meneses, Juan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2520-2755</orcidid><orcidid>https://orcid.org/0000-0002-4315-9957</orcidid></search><sort><creationdate>20201201</creationdate><title>On lexicographic representatives in braid monoids</title><author>Flores, Ramón ; González-Meneses, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-46b12f1ecc2ddb1aea8fbde0b47e651cfaa1b770502725ae118c49e23badf78b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Braiding</topic><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Convex and Discrete Geometry</topic><topic>Fibonacci numbers</topic><topic>Finishes</topic><topic>Group Theory and Generalizations</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monoids</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flores, Ramón</creatorcontrib><creatorcontrib>González-Meneses, Juan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of algebraic combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flores, Ramón</au><au>González-Meneses, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On lexicographic representatives in braid monoids</atitle><jtitle>Journal of algebraic combinatorics</jtitle><stitle>J Algebr Comb</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>52</volume><issue>4</issue><spage>561</spage><epage>597</epage><pages>561-597</pages><issn>0925-9899</issn><eissn>1572-9192</eissn><abstract>The language of maximal lexicographic representatives of elements in the positive braid monoid A n with n generators is a regular language. We describe with great detail the smallest finite-state automaton accepting such language and study the proportion of elements of length k whose maximal lexicographic representative finishes with the first generator. This proportion tends to some number P n , 1 , as k tends to infinity, and we show that P n , 1 ≥ 3 16 = 0.1875 for every n ≥ 1 . We also provide an explicit formula, based on the Fibonacci numbers, for the number of states of the automaton. Finally, we present the pseudocode of an algorithm which computes the adjacency matrix of the finite-state automaton.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10801-019-00913-7</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-2520-2755</orcidid><orcidid>https://orcid.org/0000-0002-4315-9957</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0925-9899
ispartof Journal of algebraic combinatorics, 2020-12, Vol.52 (4), p.561-597
issn 0925-9899
1572-9192
language eng
recordid cdi_proquest_journals_2451546730
source SpringerNature Journals
subjects Algorithms
Braiding
Combinatorics
Computer Science
Convex and Discrete Geometry
Fibonacci numbers
Finishes
Group Theory and Generalizations
Lattices
Mathematics
Mathematics and Statistics
Monoids
Order
Ordered Algebraic Structures
title On lexicographic representatives in braid monoids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20lexicographic%20representatives%20in%20braid%20monoids&rft.jtitle=Journal%20of%20algebraic%20combinatorics&rft.au=Flores,%20Ram%C3%B3n&rft.date=2020-12-01&rft.volume=52&rft.issue=4&rft.spage=561&rft.epage=597&rft.pages=561-597&rft.issn=0925-9899&rft.eissn=1572-9192&rft_id=info:doi/10.1007/s10801-019-00913-7&rft_dat=%3Cproquest_cross%3E2451546730%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451546730&rft_id=info:pmid/&rfr_iscdi=true