On lexicographic representatives in braid monoids
The language of maximal lexicographic representatives of elements in the positive braid monoid A n with n generators is a regular language. We describe with great detail the smallest finite-state automaton accepting such language and study the proportion of elements of length k whose maximal lexicog...
Gespeichert in:
Veröffentlicht in: | Journal of algebraic combinatorics 2020-12, Vol.52 (4), p.561-597 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The language of maximal lexicographic representatives of elements in the positive braid monoid
A
n
with
n
generators is a regular language. We describe with great detail the smallest finite-state automaton accepting such language and study the proportion of elements of length
k
whose maximal lexicographic representative finishes with the first generator. This proportion tends to some number
P
n
,
1
, as
k
tends to infinity, and we show that
P
n
,
1
≥
3
16
=
0.1875
for every
n
≥
1
. We also provide an explicit formula, based on the Fibonacci numbers, for the number of states of the automaton. Finally, we present the pseudocode of an algorithm which computes the adjacency matrix of the finite-state automaton. |
---|---|
ISSN: | 0925-9899 1572-9192 |
DOI: | 10.1007/s10801-019-00913-7 |