On 0-Rotatable Graceful Caterpillars

An injection f : V ( T ) → { 0 , … , | E ( T ) | } of a tree T is a graceful labelling if { | f ( u ) - f ( v ) | : u v ∈ E ( T ) } = { 1 , … , | E ( T ) | } . Tree T is 0-rotatable if, for any v ∈ V ( T ) , there exists a graceful labelling f of T such that f ( v ) = 0 . In this work, the following...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2020-11, Vol.36 (6), p.1655-1673
Hauptverfasser: Luiz, Atílio G., Campos, C. N., Richter, R. Bruce
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1673
container_issue 6
container_start_page 1655
container_title Graphs and combinatorics
container_volume 36
creator Luiz, Atílio G.
Campos, C. N.
Richter, R. Bruce
description An injection f : V ( T ) → { 0 , … , | E ( T ) | } of a tree T is a graceful labelling if { | f ( u ) - f ( v ) | : u v ∈ E ( T ) } = { 1 , … , | E ( T ) | } . Tree T is 0-rotatable if, for any v ∈ V ( T ) , there exists a graceful labelling f of T such that f ( v ) = 0 . In this work, the following families of caterpillars are proved to be 0-rotatable: caterpillars with a perfect matching; caterpillars obtained by linking one leaf of the star K 1 , s - 1 to a leaf of a path P n with n ≥ 3 and s ≥ ⌈ n 2 ⌉ ; caterpillars with diameter five or six; and caterpillars T with diam ( T ) ≥ 7 such that, for every non-leaf vertex v ∈ V ( T ) , the number of leaves adjacent to v is even and is at least 2 + 2 ( ( diam ( T ) - 1 ) mod 2 ) . These results reinforce the conjecture that all caterpillars with diameter at least five are 0-rotatable.
doi_str_mv 10.1007/s00373-020-02226-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2451546112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2451546112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ae09419bdebc7c682e4ada8e954586d216aa89b78659bcd8c91b0d2e2c3d01a3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMoWFf_gKeCXqMzaZI2R1l0FRYWZO9hmqSyS21r0h7891YrePMwvMv73sDH2DXCHQKU9wmgKAsOAuYTQnM4YRnKQnFlUJ6yDAwiB0Rzzi5SOgKAQgkZu911OfDXfqSR6jbkm0guNFObr2kMcTi0LcV0yc4aalO4-s0V2z897tfPfLvbvKwfttyJEkZOAYxEU_tQu9LpSgRJnqpglFSV9gI1UWXqstLK1M5XzmANXgThCg9IxYrdLLND7D-mkEZ77KfYzR-tkAqV1Ihiboml5WKfUgyNHeLhneKnRbDfMuwiw84y7I8MCzNULFCay91biH_T_1Bfb9lf8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451546112</pqid></control><display><type>article</type><title>On 0-Rotatable Graceful Caterpillars</title><source>Springer Online Journals Complete</source><creator>Luiz, Atílio G. ; Campos, C. N. ; Richter, R. Bruce</creator><creatorcontrib>Luiz, Atílio G. ; Campos, C. N. ; Richter, R. Bruce</creatorcontrib><description>An injection f : V ( T ) → { 0 , … , | E ( T ) | } of a tree T is a graceful labelling if { | f ( u ) - f ( v ) | : u v ∈ E ( T ) } = { 1 , … , | E ( T ) | } . Tree T is 0-rotatable if, for any v ∈ V ( T ) , there exists a graceful labelling f of T such that f ( v ) = 0 . In this work, the following families of caterpillars are proved to be 0-rotatable: caterpillars with a perfect matching; caterpillars obtained by linking one leaf of the star K 1 , s - 1 to a leaf of a path P n with n ≥ 3 and s ≥ ⌈ n 2 ⌉ ; caterpillars with diameter five or six; and caterpillars T with diam ( T ) ≥ 7 such that, for every non-leaf vertex v ∈ V ( T ) , the number of leaves adjacent to v is even and is at least 2 + 2 ( ( diam ( T ) - 1 ) mod 2 ) . These results reinforce the conjecture that all caterpillars with diameter at least five are 0-rotatable.</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-020-02226-0</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Caterpillars ; Combinatorics ; Engineering Design ; Labeling ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Graphs and combinatorics, 2020-11, Vol.36 (6), p.1655-1673</ispartof><rights>Springer Japan KK, part of Springer Nature 2020</rights><rights>Springer Japan KK, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-ae09419bdebc7c682e4ada8e954586d216aa89b78659bcd8c91b0d2e2c3d01a3</cites><orcidid>0000-0002-6177-403X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00373-020-02226-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00373-020-02226-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Luiz, Atílio G.</creatorcontrib><creatorcontrib>Campos, C. N.</creatorcontrib><creatorcontrib>Richter, R. Bruce</creatorcontrib><title>On 0-Rotatable Graceful Caterpillars</title><title>Graphs and combinatorics</title><addtitle>Graphs and Combinatorics</addtitle><description>An injection f : V ( T ) → { 0 , … , | E ( T ) | } of a tree T is a graceful labelling if { | f ( u ) - f ( v ) | : u v ∈ E ( T ) } = { 1 , … , | E ( T ) | } . Tree T is 0-rotatable if, for any v ∈ V ( T ) , there exists a graceful labelling f of T such that f ( v ) = 0 . In this work, the following families of caterpillars are proved to be 0-rotatable: caterpillars with a perfect matching; caterpillars obtained by linking one leaf of the star K 1 , s - 1 to a leaf of a path P n with n ≥ 3 and s ≥ ⌈ n 2 ⌉ ; caterpillars with diameter five or six; and caterpillars T with diam ( T ) ≥ 7 such that, for every non-leaf vertex v ∈ V ( T ) , the number of leaves adjacent to v is even and is at least 2 + 2 ( ( diam ( T ) - 1 ) mod 2 ) . These results reinforce the conjecture that all caterpillars with diameter at least five are 0-rotatable.</description><subject>Caterpillars</subject><subject>Combinatorics</subject><subject>Engineering Design</subject><subject>Labeling</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQhYMoWFf_gKeCXqMzaZI2R1l0FRYWZO9hmqSyS21r0h7891YrePMwvMv73sDH2DXCHQKU9wmgKAsOAuYTQnM4YRnKQnFlUJ6yDAwiB0Rzzi5SOgKAQgkZu911OfDXfqSR6jbkm0guNFObr2kMcTi0LcV0yc4aalO4-s0V2z897tfPfLvbvKwfttyJEkZOAYxEU_tQu9LpSgRJnqpglFSV9gI1UWXqstLK1M5XzmANXgThCg9IxYrdLLND7D-mkEZ77KfYzR-tkAqV1Ihiboml5WKfUgyNHeLhneKnRbDfMuwiw84y7I8MCzNULFCay91biH_T_1Bfb9lf8w</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Luiz, Atílio G.</creator><creator>Campos, C. N.</creator><creator>Richter, R. Bruce</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6177-403X</orcidid></search><sort><creationdate>20201101</creationdate><title>On 0-Rotatable Graceful Caterpillars</title><author>Luiz, Atílio G. ; Campos, C. N. ; Richter, R. Bruce</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ae09419bdebc7c682e4ada8e954586d216aa89b78659bcd8c91b0d2e2c3d01a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Caterpillars</topic><topic>Combinatorics</topic><topic>Engineering Design</topic><topic>Labeling</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luiz, Atílio G.</creatorcontrib><creatorcontrib>Campos, C. N.</creatorcontrib><creatorcontrib>Richter, R. Bruce</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luiz, Atílio G.</au><au>Campos, C. N.</au><au>Richter, R. Bruce</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On 0-Rotatable Graceful Caterpillars</atitle><jtitle>Graphs and combinatorics</jtitle><stitle>Graphs and Combinatorics</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>36</volume><issue>6</issue><spage>1655</spage><epage>1673</epage><pages>1655-1673</pages><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>An injection f : V ( T ) → { 0 , … , | E ( T ) | } of a tree T is a graceful labelling if { | f ( u ) - f ( v ) | : u v ∈ E ( T ) } = { 1 , … , | E ( T ) | } . Tree T is 0-rotatable if, for any v ∈ V ( T ) , there exists a graceful labelling f of T such that f ( v ) = 0 . In this work, the following families of caterpillars are proved to be 0-rotatable: caterpillars with a perfect matching; caterpillars obtained by linking one leaf of the star K 1 , s - 1 to a leaf of a path P n with n ≥ 3 and s ≥ ⌈ n 2 ⌉ ; caterpillars with diameter five or six; and caterpillars T with diam ( T ) ≥ 7 such that, for every non-leaf vertex v ∈ V ( T ) , the number of leaves adjacent to v is even and is at least 2 + 2 ( ( diam ( T ) - 1 ) mod 2 ) . These results reinforce the conjecture that all caterpillars with diameter at least five are 0-rotatable.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s00373-020-02226-0</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6177-403X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0911-0119
ispartof Graphs and combinatorics, 2020-11, Vol.36 (6), p.1655-1673
issn 0911-0119
1435-5914
language eng
recordid cdi_proquest_journals_2451546112
source Springer Online Journals Complete
subjects Caterpillars
Combinatorics
Engineering Design
Labeling
Mathematics
Mathematics and Statistics
Original Paper
title On 0-Rotatable Graceful Caterpillars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%200-Rotatable%20Graceful%20Caterpillars&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Luiz,%20At%C3%ADlio%20G.&rft.date=2020-11-01&rft.volume=36&rft.issue=6&rft.spage=1655&rft.epage=1673&rft.pages=1655-1673&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-020-02226-0&rft_dat=%3Cproquest_cross%3E2451546112%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451546112&rft_id=info:pmid/&rfr_iscdi=true