On 0-Rotatable Graceful Caterpillars
An injection f : V ( T ) → { 0 , … , | E ( T ) | } of a tree T is a graceful labelling if { | f ( u ) - f ( v ) | : u v ∈ E ( T ) } = { 1 , … , | E ( T ) | } . Tree T is 0-rotatable if, for any v ∈ V ( T ) , there exists a graceful labelling f of T such that f ( v ) = 0 . In this work, the following...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2020-11, Vol.36 (6), p.1655-1673 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An injection
f
:
V
(
T
)
→
{
0
,
…
,
|
E
(
T
)
|
}
of a tree
T
is a graceful labelling if
{
|
f
(
u
)
-
f
(
v
)
|
:
u
v
∈
E
(
T
)
}
=
{
1
,
…
,
|
E
(
T
)
|
}
. Tree
T
is 0-rotatable if, for any
v
∈
V
(
T
)
, there exists a graceful labelling
f
of
T
such that
f
(
v
)
=
0
. In this work, the following families of caterpillars are proved to be 0-rotatable: caterpillars with a perfect matching; caterpillars obtained by linking one leaf of the star
K
1
,
s
-
1
to a leaf of a path
P
n
with
n
≥
3
and
s
≥
⌈
n
2
⌉
; caterpillars with diameter five or six; and caterpillars
T
with
diam
(
T
)
≥
7
such that, for every non-leaf vertex
v
∈
V
(
T
)
, the number of leaves adjacent to
v
is even and is at least
2
+
2
(
(
diam
(
T
)
-
1
)
mod
2
)
. These results reinforce the conjecture that all caterpillars with diameter at least five are 0-rotatable. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-020-02226-0 |