Distribution of Complex Algebraic Numbers on the Unit Circle

For −π ≤ β 1 < β 2 ≤ π, denote by Φ β1,β2 (Q) the amount of algebraic numbers of degree 2m, elliptic height at most Q, and arguments in [β 1 , β 2 ], lying on the unit circle. It is proved that Φ β 1 , β 2 Q = Q m + 1 ∫ β 1 β 2 p t dt + O Q m log Q , Q → ∞ , where p(t) coincides up to a constant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-11, Vol.251 (1), p.54-66
Hauptverfasser: Götze, F., Gusakova, A., Kabluchko, Z., Zaporozhets, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For −π ≤ β 1 < β 2 ≤ π, denote by Φ β1,β2 (Q) the amount of algebraic numbers of degree 2m, elliptic height at most Q, and arguments in [β 1 , β 2 ], lying on the unit circle. It is proved that Φ β 1 , β 2 Q = Q m + 1 ∫ β 1 β 2 p t dt + O Q m log Q , Q → ∞ , where p(t) coincides up to a constant factor with density of the roots of a random trigonometrical polynomial. This density is calculated explicitly using the Edelman–Kostlan formula.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-020-05064-w