Distribution of Complex Algebraic Numbers on the Unit Circle
For −π ≤ β 1 < β 2 ≤ π, denote by Φ β1,β2 (Q) the amount of algebraic numbers of degree 2m, elliptic height at most Q, and arguments in [β 1 , β 2 ], lying on the unit circle. It is proved that Φ β 1 , β 2 Q = Q m + 1 ∫ β 1 β 2 p t dt + O Q m log Q , Q → ∞ , where p(t) coincides up to a constant...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-11, Vol.251 (1), p.54-66 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For −π ≤ β
1
< β
2
≤ π, denote by Φ
β1,β2
(Q) the amount of algebraic numbers of degree 2m, elliptic height at most Q, and arguments in [β
1
, β
2
], lying on the unit circle. It is proved that
Φ
β
1
,
β
2
Q
=
Q
m
+
1
∫
β
1
β
2
p
t
dt
+
O
Q
m
log
Q
,
Q
→
∞
,
where p(t) coincides up to a constant factor with density of the roots of a random trigonometrical polynomial. This density is calculated explicitly using the Edelman–Kostlan formula. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-020-05064-w |