Object-Independent Human-to-Robot Handovers Using Real Time Robotic Vision

We present an approach for safe, and object-independent human-to-robot handovers using real time robotic vision, and manipulation. We aim for general applicability with a generic object detector, a fast grasp selection algorithm, and by using a single gripper-mounted RGB-D camera, hence not relying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2021-01, Vol.6 (1), p.17-23
Hauptverfasser: Rosenberger, Patrick, Cosgun, Akansel, Newbury, Rhys, Kwan, Jun, Ortenzi, Valerio, Corke, Peter, Grafinger, Manfred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue 1
container_start_page 17
container_title IEEE robotics and automation letters
container_volume 6
creator Rosenberger, Patrick
Cosgun, Akansel
Newbury, Rhys
Kwan, Jun
Ortenzi, Valerio
Corke, Peter
Grafinger, Manfred
description We present an approach for safe, and object-independent human-to-robot handovers using real time robotic vision, and manipulation. We aim for general applicability with a generic object detector, a fast grasp selection algorithm, and by using a single gripper-mounted RGB-D camera, hence not relying on external sensors. The robot is controlled via visual servoing towards the object of interest. Putting a high emphasis on safety, we use two perception modules: human body part segmentation, and hand/finger segmentation. Pixels that are deemed to belong to the human are filtered out from candidate grasp poses, hence ensuring that the robot safely picks the object without colliding with the human partner. The grasp selection, and perception modules run concurrently in real-time, which allows monitoring of the progress. In experiments with 13 objects, the robot was able to successfully take the object from the human in 81.9% of the trials.
doi_str_mv 10.1109/LRA.2020.3026970
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2451189948</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9206048</ieee_id><sourcerecordid>2451189948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-e9b1da72eb97007d1f5a91f0e144dff752f8688d5b887cb9da36f6fb9fbcc6763</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGrvgpcFz1snyW6yOZaitlIolNZrSHYnktJu6mYr-O9NbREv88G8887wEHJPYUwpqKfFajJmwGDMgQkl4YoMGJcy51KI63_1LRnFuAUAWjLJVTkgb0u7xbrP522DB0yh7bPZcW_avA_5KtiQWtM24Qu7mG2ibz-yFZpdtvZ7zH7nvs7effShvSM3zuwiji55SDYvz-vpLF8sX-fTySKvOed9jsrSxkiGNj0KsqGuNIo6QFoUjXOyZK4SVdWUtqpkbVVjuHDCWeVsXQsp-JA8nn0PXfg8Yuz1Nhy7Np3UrCgprZQqqqSCs6ruQowdOn3o_N5035qCPkHTCZo-QdMXaGnl4bziEfFPrhgISIY_OzVnig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451189948</pqid></control><display><type>article</type><title>Object-Independent Human-to-Robot Handovers Using Real Time Robotic Vision</title><source>IEEE Electronic Library (IEL)</source><creator>Rosenberger, Patrick ; Cosgun, Akansel ; Newbury, Rhys ; Kwan, Jun ; Ortenzi, Valerio ; Corke, Peter ; Grafinger, Manfred</creator><creatorcontrib>Rosenberger, Patrick ; Cosgun, Akansel ; Newbury, Rhys ; Kwan, Jun ; Ortenzi, Valerio ; Corke, Peter ; Grafinger, Manfred</creatorcontrib><description>We present an approach for safe, and object-independent human-to-robot handovers using real time robotic vision, and manipulation. We aim for general applicability with a generic object detector, a fast grasp selection algorithm, and by using a single gripper-mounted RGB-D camera, hence not relying on external sensors. The robot is controlled via visual servoing towards the object of interest. Putting a high emphasis on safety, we use two perception modules: human body part segmentation, and hand/finger segmentation. Pixels that are deemed to belong to the human are filtered out from candidate grasp poses, hence ensuring that the robot safely picks the object without colliding with the human partner. The grasp selection, and perception modules run concurrently in real-time, which allows monitoring of the progress. In experiments with 13 objects, the robot was able to successfully take the object from the human in 81.9% of the trials.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2020.3026970</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Body parts ; Deep learning in grasping and manipulation ; Grasping ; Handover ; Machine vision ; Modules ; Perception ; perception for grasping and manipulation ; physical human-robot interaction ; Real time ; Real-time systems ; Robot kinematics ; Robots ; Safety ; Segmentation ; Servocontrol ; Visual control</subject><ispartof>IEEE robotics and automation letters, 2021-01, Vol.6 (1), p.17-23</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-e9b1da72eb97007d1f5a91f0e144dff752f8688d5b887cb9da36f6fb9fbcc6763</citedby><cites>FETCH-LOGICAL-c333t-e9b1da72eb97007d1f5a91f0e144dff752f8688d5b887cb9da36f6fb9fbcc6763</cites><orcidid>0000-0002-8194-1616 ; 0000-0001-6650-367X ; 0000-0001-6596-1126 ; 0000-0002-5504-0267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9206048$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9206048$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rosenberger, Patrick</creatorcontrib><creatorcontrib>Cosgun, Akansel</creatorcontrib><creatorcontrib>Newbury, Rhys</creatorcontrib><creatorcontrib>Kwan, Jun</creatorcontrib><creatorcontrib>Ortenzi, Valerio</creatorcontrib><creatorcontrib>Corke, Peter</creatorcontrib><creatorcontrib>Grafinger, Manfred</creatorcontrib><title>Object-Independent Human-to-Robot Handovers Using Real Time Robotic Vision</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>We present an approach for safe, and object-independent human-to-robot handovers using real time robotic vision, and manipulation. We aim for general applicability with a generic object detector, a fast grasp selection algorithm, and by using a single gripper-mounted RGB-D camera, hence not relying on external sensors. The robot is controlled via visual servoing towards the object of interest. Putting a high emphasis on safety, we use two perception modules: human body part segmentation, and hand/finger segmentation. Pixels that are deemed to belong to the human are filtered out from candidate grasp poses, hence ensuring that the robot safely picks the object without colliding with the human partner. The grasp selection, and perception modules run concurrently in real-time, which allows monitoring of the progress. In experiments with 13 objects, the robot was able to successfully take the object from the human in 81.9% of the trials.</description><subject>Algorithms</subject><subject>Body parts</subject><subject>Deep learning in grasping and manipulation</subject><subject>Grasping</subject><subject>Handover</subject><subject>Machine vision</subject><subject>Modules</subject><subject>Perception</subject><subject>perception for grasping and manipulation</subject><subject>physical human-robot interaction</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Robot kinematics</subject><subject>Robots</subject><subject>Safety</subject><subject>Segmentation</subject><subject>Servocontrol</subject><subject>Visual control</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWGrvgpcFz1snyW6yOZaitlIolNZrSHYnktJu6mYr-O9NbREv88G8887wEHJPYUwpqKfFajJmwGDMgQkl4YoMGJcy51KI63_1LRnFuAUAWjLJVTkgb0u7xbrP522DB0yh7bPZcW_avA_5KtiQWtM24Qu7mG2ibz-yFZpdtvZ7zH7nvs7effShvSM3zuwiji55SDYvz-vpLF8sX-fTySKvOed9jsrSxkiGNj0KsqGuNIo6QFoUjXOyZK4SVdWUtqpkbVVjuHDCWeVsXQsp-JA8nn0PXfg8Yuz1Nhy7Np3UrCgprZQqqqSCs6ruQowdOn3o_N5035qCPkHTCZo-QdMXaGnl4bziEfFPrhgISIY_OzVnig</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Rosenberger, Patrick</creator><creator>Cosgun, Akansel</creator><creator>Newbury, Rhys</creator><creator>Kwan, Jun</creator><creator>Ortenzi, Valerio</creator><creator>Corke, Peter</creator><creator>Grafinger, Manfred</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8194-1616</orcidid><orcidid>https://orcid.org/0000-0001-6650-367X</orcidid><orcidid>https://orcid.org/0000-0001-6596-1126</orcidid><orcidid>https://orcid.org/0000-0002-5504-0267</orcidid></search><sort><creationdate>202101</creationdate><title>Object-Independent Human-to-Robot Handovers Using Real Time Robotic Vision</title><author>Rosenberger, Patrick ; Cosgun, Akansel ; Newbury, Rhys ; Kwan, Jun ; Ortenzi, Valerio ; Corke, Peter ; Grafinger, Manfred</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-e9b1da72eb97007d1f5a91f0e144dff752f8688d5b887cb9da36f6fb9fbcc6763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Body parts</topic><topic>Deep learning in grasping and manipulation</topic><topic>Grasping</topic><topic>Handover</topic><topic>Machine vision</topic><topic>Modules</topic><topic>Perception</topic><topic>perception for grasping and manipulation</topic><topic>physical human-robot interaction</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Robot kinematics</topic><topic>Robots</topic><topic>Safety</topic><topic>Segmentation</topic><topic>Servocontrol</topic><topic>Visual control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosenberger, Patrick</creatorcontrib><creatorcontrib>Cosgun, Akansel</creatorcontrib><creatorcontrib>Newbury, Rhys</creatorcontrib><creatorcontrib>Kwan, Jun</creatorcontrib><creatorcontrib>Ortenzi, Valerio</creatorcontrib><creatorcontrib>Corke, Peter</creatorcontrib><creatorcontrib>Grafinger, Manfred</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rosenberger, Patrick</au><au>Cosgun, Akansel</au><au>Newbury, Rhys</au><au>Kwan, Jun</au><au>Ortenzi, Valerio</au><au>Corke, Peter</au><au>Grafinger, Manfred</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Object-Independent Human-to-Robot Handovers Using Real Time Robotic Vision</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2021-01</date><risdate>2021</risdate><volume>6</volume><issue>1</issue><spage>17</spage><epage>23</epage><pages>17-23</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>We present an approach for safe, and object-independent human-to-robot handovers using real time robotic vision, and manipulation. We aim for general applicability with a generic object detector, a fast grasp selection algorithm, and by using a single gripper-mounted RGB-D camera, hence not relying on external sensors. The robot is controlled via visual servoing towards the object of interest. Putting a high emphasis on safety, we use two perception modules: human body part segmentation, and hand/finger segmentation. Pixels that are deemed to belong to the human are filtered out from candidate grasp poses, hence ensuring that the robot safely picks the object without colliding with the human partner. The grasp selection, and perception modules run concurrently in real-time, which allows monitoring of the progress. In experiments with 13 objects, the robot was able to successfully take the object from the human in 81.9% of the trials.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2020.3026970</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8194-1616</orcidid><orcidid>https://orcid.org/0000-0001-6650-367X</orcidid><orcidid>https://orcid.org/0000-0001-6596-1126</orcidid><orcidid>https://orcid.org/0000-0002-5504-0267</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2021-01, Vol.6 (1), p.17-23
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2451189948
source IEEE Electronic Library (IEL)
subjects Algorithms
Body parts
Deep learning in grasping and manipulation
Grasping
Handover
Machine vision
Modules
Perception
perception for grasping and manipulation
physical human-robot interaction
Real time
Real-time systems
Robot kinematics
Robots
Safety
Segmentation
Servocontrol
Visual control
title Object-Independent Human-to-Robot Handovers Using Real Time Robotic Vision
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A37%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Object-Independent%20Human-to-Robot%20Handovers%20Using%20Real%20Time%20Robotic%20Vision&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Rosenberger,%20Patrick&rft.date=2021-01&rft.volume=6&rft.issue=1&rft.spage=17&rft.epage=23&rft.pages=17-23&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2020.3026970&rft_dat=%3Cproquest_RIE%3E2451189948%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451189948&rft_id=info:pmid/&rft_ieee_id=9206048&rfr_iscdi=true