Object-Independent Human-to-Robot Handovers Using Real Time Robotic Vision

We present an approach for safe, and object-independent human-to-robot handovers using real time robotic vision, and manipulation. We aim for general applicability with a generic object detector, a fast grasp selection algorithm, and by using a single gripper-mounted RGB-D camera, hence not relying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2021-01, Vol.6 (1), p.17-23
Hauptverfasser: Rosenberger, Patrick, Cosgun, Akansel, Newbury, Rhys, Kwan, Jun, Ortenzi, Valerio, Corke, Peter, Grafinger, Manfred
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present an approach for safe, and object-independent human-to-robot handovers using real time robotic vision, and manipulation. We aim for general applicability with a generic object detector, a fast grasp selection algorithm, and by using a single gripper-mounted RGB-D camera, hence not relying on external sensors. The robot is controlled via visual servoing towards the object of interest. Putting a high emphasis on safety, we use two perception modules: human body part segmentation, and hand/finger segmentation. Pixels that are deemed to belong to the human are filtered out from candidate grasp poses, hence ensuring that the robot safely picks the object without colliding with the human partner. The grasp selection, and perception modules run concurrently in real-time, which allows monitoring of the progress. In experiments with 13 objects, the robot was able to successfully take the object from the human in 81.9% of the trials.
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2020.3026970