Influence of clogging substances on pore characteristics and permeability of geotextile envelopes of subsurface drainage pipes in arid areas
This study investigates the influence of clogging substances on pore characteristics and permeability of geotextile envelopes that were used for 3, 7 and 15 years in irrigated farmlands in Xinjiang region, which is arid and suffers from the soil salinity problem. Results show that the macropores (ab...
Gespeichert in:
Veröffentlicht in: | Geotextiles and geomembranes 2020-10, Vol.48 (5), p.735-746 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study investigates the influence of clogging substances on pore characteristics and permeability of geotextile envelopes that were used for 3, 7 and 15 years in irrigated farmlands in Xinjiang region, which is arid and suffers from the soil salinity problem. Results show that the macropores (above 125 μm) of envelopes are evidently clogged, whereas the smaller pores less than 100 μm are still unblocked after operation. The permeability coefficients of geotextile envelopes after serving for 3 and 15 years are smaller than the minimum required permeability coefficients after clogging. The main chemical components of clogging substances in the geotextile envelope are silicon dioxide and calcium carbonate. Calcium carbonate content of the geotextile envelope is consistent with calcium carbonate content of soil. Chemical clogging susceptibility increases with the operation time of the subsurface drainage pipes. The ratio of O90 size of envelope material over d90 of soils (O90/d90) and saturation index (SI) can be used to assess the susceptibility of physical and chemical clogging respectively. This study provides a preliminary reference for estimating the clogging susceptibility of geotextile envelopes in arid areas. |
---|---|
ISSN: | 0266-1144 1879-3584 |
DOI: | 10.1016/j.geotexmem.2020.05.006 |