Rank-Based Procedures for Linear Models: Applications to Pharmaceutical Science Data

Rank-based procedures for linear models generalize the simple Wilcoxon rank tests in the simple location models, inheriting their robustness and high efficiency properties. Given a general linear model, these rank-based procedures form a complete analysis, including estimation, confidence, and multi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug information journal 2001, Vol.35 (3), p.947-971
Hauptverfasser: Abebe, Asheber, Crimin, Kimberly, Mckean, Joseph W., Haas, Joseph V., Vidmar, Thomas J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rank-based procedures for linear models generalize the simple Wilcoxon rank tests in the simple location models, inheriting their robustness and high efficiency properties. Given a general linear model, these rank-based procedures form a complete analysis, including estimation, confidence, and multiple comparison procedures, and tests of general linear hypotheses. In this article, these ranked-based procedures are reviewed in the context of pharmaceutical science data. Examples involving ANOVA- and ANCOVA-type designs are considered in some detail. We further present a Web-based interface incorporating the statistical software R and RGLM for the computation of these procedures. As discussed, the user need only visit our Web site to compute these procedures. Taken together these rank-based procedures offer the user an efficient and robust alternative to standard least squares procedures for linear models.
ISSN:2168-4790
0092-8615
2168-4804
2164-9200
DOI:10.1177/009286150103500334