Self-generating lower bounds and continuation for the Boltzmann equation
For the spatially inhomogeneous, non-cutoff Boltzmann equation posed in the whole space R x 3 , we establish pointwise lower bounds that appear instantaneously even if the initial data contains vacuum regions. Our lower bounds depend only on the initial data and upper bounds for the mass and energy...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2020-12, Vol.59 (6), Article 191 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Calculus of variations and partial differential equations |
container_volume | 59 |
creator | Henderson, Christopher Snelson, Stanley Tarfulea, Andrei |
description | For the spatially inhomogeneous, non-cutoff Boltzmann equation posed in the whole space
R
x
3
, we establish pointwise lower bounds that appear instantaneously even if the initial data contains vacuum regions. Our lower bounds depend only on the initial data and upper bounds for the mass and energy densities of the solution. As an application, we improve the weakest known continuation criterion for large-data solutions, by removing the assumptions of mass bounded below and entropy bounded above. |
doi_str_mv | 10.1007/s00526-020-01856-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450780119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450780119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bea531866d06e38a333ac2459f7489e7a57fc57e24fc5374b981e4022540bca53</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXAdfTlc5KlFrVCwYW6DplpprZMkzaZQfTXmzqCO1dvce-5Dw5ClxSuKUB1kwEkUwQYEKBaKmKO0IQKzghoLo_RBIwQhCllTtFZzhsAKjUTEzR_8V1LVj745Pp1WOEufviE6ziEZcYuLHETQwmGksaA25hw_-7xXez6r60LAfv9GJ2jk9Z12V_83il6e7h_nc3J4vnxaXa7IA2npie1d5JTrdQSlOfacc5dw4Q0bSW08ZWTVdvIyjNRDq9EbTT1AhiTAuqmsFN0Ne7uUtwPPvd2E4cUyktbZqDSQKkpLTa2mhRzTr61u7TeuvRpKdiDMTsas8WY_TFmDxAfoVzKYeXT3_Q_1DcFem3b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450780119</pqid></control><display><type>article</type><title>Self-generating lower bounds and continuation for the Boltzmann equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Henderson, Christopher ; Snelson, Stanley ; Tarfulea, Andrei</creator><creatorcontrib>Henderson, Christopher ; Snelson, Stanley ; Tarfulea, Andrei</creatorcontrib><description>For the spatially inhomogeneous, non-cutoff Boltzmann equation posed in the whole space
R
x
3
, we establish pointwise lower bounds that appear instantaneously even if the initial data contains vacuum regions. Our lower bounds depend only on the initial data and upper bounds for the mass and energy densities of the solution. As an application, we improve the weakest known continuation criterion for large-data solutions, by removing the assumptions of mass bounded below and entropy bounded above.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-020-01856-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Boltzmann transport equation ; Calculus of Variations and Optimal Control; Optimization ; Control ; Lower bounds ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Systems Theory ; Theoretical ; Upper bounds</subject><ispartof>Calculus of variations and partial differential equations, 2020-12, Vol.59 (6), Article 191</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bea531866d06e38a333ac2459f7489e7a57fc57e24fc5374b981e4022540bca53</citedby><cites>FETCH-LOGICAL-c319t-bea531866d06e38a333ac2459f7489e7a57fc57e24fc5374b981e4022540bca53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-020-01856-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-020-01856-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Henderson, Christopher</creatorcontrib><creatorcontrib>Snelson, Stanley</creatorcontrib><creatorcontrib>Tarfulea, Andrei</creatorcontrib><title>Self-generating lower bounds and continuation for the Boltzmann equation</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>For the spatially inhomogeneous, non-cutoff Boltzmann equation posed in the whole space
R
x
3
, we establish pointwise lower bounds that appear instantaneously even if the initial data contains vacuum regions. Our lower bounds depend only on the initial data and upper bounds for the mass and energy densities of the solution. As an application, we improve the weakest known continuation criterion for large-data solutions, by removing the assumptions of mass bounded below and entropy bounded above.</description><subject>Analysis</subject><subject>Boltzmann transport equation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Systems Theory</subject><subject>Theoretical</subject><subject>Upper bounds</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wFXAdfTlc5KlFrVCwYW6DplpprZMkzaZQfTXmzqCO1dvce-5Dw5ClxSuKUB1kwEkUwQYEKBaKmKO0IQKzghoLo_RBIwQhCllTtFZzhsAKjUTEzR_8V1LVj745Pp1WOEufviE6ziEZcYuLHETQwmGksaA25hw_-7xXez6r60LAfv9GJ2jk9Z12V_83il6e7h_nc3J4vnxaXa7IA2npie1d5JTrdQSlOfacc5dw4Q0bSW08ZWTVdvIyjNRDq9EbTT1AhiTAuqmsFN0Ne7uUtwPPvd2E4cUyktbZqDSQKkpLTa2mhRzTr61u7TeuvRpKdiDMTsas8WY_TFmDxAfoVzKYeXT3_Q_1DcFem3b</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Henderson, Christopher</creator><creator>Snelson, Stanley</creator><creator>Tarfulea, Andrei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20201201</creationdate><title>Self-generating lower bounds and continuation for the Boltzmann equation</title><author>Henderson, Christopher ; Snelson, Stanley ; Tarfulea, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bea531866d06e38a333ac2459f7489e7a57fc57e24fc5374b981e4022540bca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Boltzmann transport equation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Systems Theory</topic><topic>Theoretical</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henderson, Christopher</creatorcontrib><creatorcontrib>Snelson, Stanley</creatorcontrib><creatorcontrib>Tarfulea, Andrei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henderson, Christopher</au><au>Snelson, Stanley</au><au>Tarfulea, Andrei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-generating lower bounds and continuation for the Boltzmann equation</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>59</volume><issue>6</issue><artnum>191</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>For the spatially inhomogeneous, non-cutoff Boltzmann equation posed in the whole space
R
x
3
, we establish pointwise lower bounds that appear instantaneously even if the initial data contains vacuum regions. Our lower bounds depend only on the initial data and upper bounds for the mass and energy densities of the solution. As an application, we improve the weakest known continuation criterion for large-data solutions, by removing the assumptions of mass bounded below and entropy bounded above.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-020-01856-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2020-12, Vol.59 (6), Article 191 |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_journals_2450780119 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Boltzmann transport equation Calculus of Variations and Optimal Control Optimization Control Lower bounds Mathematical analysis Mathematical and Computational Physics Mathematics Mathematics and Statistics Systems Theory Theoretical Upper bounds |
title | Self-generating lower bounds and continuation for the Boltzmann equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-generating%20lower%20bounds%20and%20continuation%20for%20the%20Boltzmann%20equation&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Henderson,%20Christopher&rft.date=2020-12-01&rft.volume=59&rft.issue=6&rft.artnum=191&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-020-01856-9&rft_dat=%3Cproquest_cross%3E2450780119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450780119&rft_id=info:pmid/&rfr_iscdi=true |