Self-generating lower bounds and continuation for the Boltzmann equation

For the spatially inhomogeneous, non-cutoff Boltzmann equation posed in the whole space R x 3 , we establish pointwise lower bounds that appear instantaneously even if the initial data contains vacuum regions. Our lower bounds depend only on the initial data and upper bounds for the mass and energy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2020-12, Vol.59 (6), Article 191
Hauptverfasser: Henderson, Christopher, Snelson, Stanley, Tarfulea, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Calculus of variations and partial differential equations
container_volume 59
creator Henderson, Christopher
Snelson, Stanley
Tarfulea, Andrei
description For the spatially inhomogeneous, non-cutoff Boltzmann equation posed in the whole space R x 3 , we establish pointwise lower bounds that appear instantaneously even if the initial data contains vacuum regions. Our lower bounds depend only on the initial data and upper bounds for the mass and energy densities of the solution. As an application, we improve the weakest known continuation criterion for large-data solutions, by removing the assumptions of mass bounded below and entropy bounded above.
doi_str_mv 10.1007/s00526-020-01856-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450780119</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450780119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-bea531866d06e38a333ac2459f7489e7a57fc57e24fc5374b981e4022540bca53</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wFXAdfTlc5KlFrVCwYW6DplpprZMkzaZQfTXmzqCO1dvce-5Dw5ClxSuKUB1kwEkUwQYEKBaKmKO0IQKzghoLo_RBIwQhCllTtFZzhsAKjUTEzR_8V1LVj745Pp1WOEufviE6ziEZcYuLHETQwmGksaA25hw_-7xXez6r60LAfv9GJ2jk9Z12V_83il6e7h_nc3J4vnxaXa7IA2npie1d5JTrdQSlOfacc5dw4Q0bSW08ZWTVdvIyjNRDq9EbTT1AhiTAuqmsFN0Ne7uUtwPPvd2E4cUyktbZqDSQKkpLTa2mhRzTr61u7TeuvRpKdiDMTsas8WY_TFmDxAfoVzKYeXT3_Q_1DcFem3b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450780119</pqid></control><display><type>article</type><title>Self-generating lower bounds and continuation for the Boltzmann equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Henderson, Christopher ; Snelson, Stanley ; Tarfulea, Andrei</creator><creatorcontrib>Henderson, Christopher ; Snelson, Stanley ; Tarfulea, Andrei</creatorcontrib><description>For the spatially inhomogeneous, non-cutoff Boltzmann equation posed in the whole space R x 3 , we establish pointwise lower bounds that appear instantaneously even if the initial data contains vacuum regions. Our lower bounds depend only on the initial data and upper bounds for the mass and energy densities of the solution. As an application, we improve the weakest known continuation criterion for large-data solutions, by removing the assumptions of mass bounded below and entropy bounded above.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-020-01856-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Boltzmann transport equation ; Calculus of Variations and Optimal Control; Optimization ; Control ; Lower bounds ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Systems Theory ; Theoretical ; Upper bounds</subject><ispartof>Calculus of variations and partial differential equations, 2020-12, Vol.59 (6), Article 191</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-bea531866d06e38a333ac2459f7489e7a57fc57e24fc5374b981e4022540bca53</citedby><cites>FETCH-LOGICAL-c319t-bea531866d06e38a333ac2459f7489e7a57fc57e24fc5374b981e4022540bca53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00526-020-01856-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00526-020-01856-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Henderson, Christopher</creatorcontrib><creatorcontrib>Snelson, Stanley</creatorcontrib><creatorcontrib>Tarfulea, Andrei</creatorcontrib><title>Self-generating lower bounds and continuation for the Boltzmann equation</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>For the spatially inhomogeneous, non-cutoff Boltzmann equation posed in the whole space R x 3 , we establish pointwise lower bounds that appear instantaneously even if the initial data contains vacuum regions. Our lower bounds depend only on the initial data and upper bounds for the mass and energy densities of the solution. As an application, we improve the weakest known continuation criterion for large-data solutions, by removing the assumptions of mass bounded below and entropy bounded above.</description><subject>Analysis</subject><subject>Boltzmann transport equation</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Lower bounds</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Systems Theory</subject><subject>Theoretical</subject><subject>Upper bounds</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wFXAdfTlc5KlFrVCwYW6DplpprZMkzaZQfTXmzqCO1dvce-5Dw5ClxSuKUB1kwEkUwQYEKBaKmKO0IQKzghoLo_RBIwQhCllTtFZzhsAKjUTEzR_8V1LVj745Pp1WOEufviE6ziEZcYuLHETQwmGksaA25hw_-7xXez6r60LAfv9GJ2jk9Z12V_83il6e7h_nc3J4vnxaXa7IA2npie1d5JTrdQSlOfacc5dw4Q0bSW08ZWTVdvIyjNRDq9EbTT1AhiTAuqmsFN0Ne7uUtwPPvd2E4cUyktbZqDSQKkpLTa2mhRzTr61u7TeuvRpKdiDMTsas8WY_TFmDxAfoVzKYeXT3_Q_1DcFem3b</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Henderson, Christopher</creator><creator>Snelson, Stanley</creator><creator>Tarfulea, Andrei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20201201</creationdate><title>Self-generating lower bounds and continuation for the Boltzmann equation</title><author>Henderson, Christopher ; Snelson, Stanley ; Tarfulea, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-bea531866d06e38a333ac2459f7489e7a57fc57e24fc5374b981e4022540bca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Boltzmann transport equation</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Lower bounds</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Systems Theory</topic><topic>Theoretical</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henderson, Christopher</creatorcontrib><creatorcontrib>Snelson, Stanley</creatorcontrib><creatorcontrib>Tarfulea, Andrei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henderson, Christopher</au><au>Snelson, Stanley</au><au>Tarfulea, Andrei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-generating lower bounds and continuation for the Boltzmann equation</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>59</volume><issue>6</issue><artnum>191</artnum><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>For the spatially inhomogeneous, non-cutoff Boltzmann equation posed in the whole space R x 3 , we establish pointwise lower bounds that appear instantaneously even if the initial data contains vacuum regions. Our lower bounds depend only on the initial data and upper bounds for the mass and energy densities of the solution. As an application, we improve the weakest known continuation criterion for large-data solutions, by removing the assumptions of mass bounded below and entropy bounded above.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-020-01856-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2020-12, Vol.59 (6), Article 191
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2450780119
source SpringerLink Journals - AutoHoldings
subjects Analysis
Boltzmann transport equation
Calculus of Variations and Optimal Control
Optimization
Control
Lower bounds
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Systems Theory
Theoretical
Upper bounds
title Self-generating lower bounds and continuation for the Boltzmann equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-generating%20lower%20bounds%20and%20continuation%20for%20the%20Boltzmann%20equation&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Henderson,%20Christopher&rft.date=2020-12-01&rft.volume=59&rft.issue=6&rft.artnum=191&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-020-01856-9&rft_dat=%3Cproquest_cross%3E2450780119%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450780119&rft_id=info:pmid/&rfr_iscdi=true