Self-generating lower bounds and continuation for the Boltzmann equation
For the spatially inhomogeneous, non-cutoff Boltzmann equation posed in the whole space R x 3 , we establish pointwise lower bounds that appear instantaneously even if the initial data contains vacuum regions. Our lower bounds depend only on the initial data and upper bounds for the mass and energy...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2020-12, Vol.59 (6), Article 191 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the spatially inhomogeneous, non-cutoff Boltzmann equation posed in the whole space
R
x
3
, we establish pointwise lower bounds that appear instantaneously even if the initial data contains vacuum regions. Our lower bounds depend only on the initial data and upper bounds for the mass and energy densities of the solution. As an application, we improve the weakest known continuation criterion for large-data solutions, by removing the assumptions of mass bounded below and entropy bounded above. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-020-01856-9 |