Meromorphic Extensions of (·,W)-Meromorphic Functions

In this paper we establish some classes of subspaces W of the dual F ′ of a locally convex space F such that every F -valued ( F ,  W )-meromorphic function (with/without local boundedness) on a domain D in C n , in the sense u ∘ f is meromorphic for all u ∈ W , is meromorphic. Further, combining th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complex analysis and operator theory 2020-11, Vol.14 (8), Article 79
Hauptverfasser: Quang, Thai Thuan, Lam, Lien Vuong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we establish some classes of subspaces W of the dual F ′ of a locally convex space F such that every F -valued ( F ,  W )-meromorphic function (with/without local boundedness) on a domain D in C n , in the sense u ∘ f is meromorphic for all u ∈ W , is meromorphic. Further, combining those results with studing on ( BB )-Zorn property we give conditions for Fréchet spaces E ,  F and subspaces W of F ′ under which ( F ,  W )-meromorphic functions can be meromorphically extended to a domain D of E from a subset D ∩ E B where E B is the linear hull of some balanced convex compact subset B of E . Using these results we get the answers of the following questions: (1) When does the domain of meromorphy of a ( · , W ) -meromorphic function on a Riemann domain D over a Fréchet space coincide with the envelope of holomorphy of D ? (2) When will ( · , W ) -meromorphic functions be able to extend meromorphically through an analytic subset of codimension ≥ 2 of a domain in a Fréchet space?
ISSN:1661-8254
1661-8262
DOI:10.1007/s11785-020-01038-7