Formulation, characterization and in vitro anti-leishmanial evaluation of amphotericin B loaded solid lipid nanoparticles coated with vitamin B12-stearic acid conjugate

Despite the advancement of new anti-leishmanials, amphotericin B (AmB) prevails as one of the most potent agent in the treatment of visceral leishmaniasis (VL), a neglected tropical disease affecting mostly poverty ridden and underdeveloped regions of the globe. Nonetheless, many patients display in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science & Engineering C 2020-12, Vol.117, p.111279, Article 111279
Hauptverfasser: Singh, Aakriti, Yadagiri, Ganesh, Parvez, Shabi, Singh, Om Prakash, Verma, Anurag, Sundar, Shyam, Mudavath, Shyam Lal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite the advancement of new anti-leishmanials, amphotericin B (AmB) prevails as one of the most potent agent in the treatment of visceral leishmaniasis (VL), a neglected tropical disease affecting mostly poverty ridden and underdeveloped regions of the globe. Nonetheless, many patients display intolerance to parenteral AmB, notably at higher dosages. Also, conventional AmB presents an apparently poor absorption. Therefore, to improve AmB bioavailability and overcome multiple barriers for oral delivery of AmB, we fabricated a promising vitamin B12-stearic acid (VBS) conjugate coated solid lipid nanoparticles (SLNs) encapsulated with AmB (VBS-AmB-SLNs) by a combination of double emulsion solvent evaporation and thermal sensitive hydrogel techniques. VBS-AmB-SLNs showed a particle size of 306.66 ± 3.35 nm with polydispersity index of 0.335 ± 0.08 while the encapsulation efficiency and drug loading was observed to be 97.99 ± 1.6% and 38.5 ± 5.6% respectively. In vitro drug release showed a biphasic release pattern and chemical stability of AmB was ensured against simulated gastrointestinal fluids. Cellular uptake studies confirmed complete internalization of the formulation. Anti-leishmanial evaluation against intramacrophage amastigotes showed an enhanced efficacy of 94% which was significantly (P 
ISSN:0928-4931
1873-0191
DOI:10.1016/j.msec.2020.111279