On the Ellis semigroup of a cascade on a compact metric countable space
Let X be a compact metric countable space, let f : X → X be a homeomorphism and let E ( X , f ) be its Ellis semigroup. Among other results we show that the following statements are equivalent: (1) ( X , f ) is equicontinuous, (2) ( X , f ) is distal and (3) every point is periodic. We use this r...
Gespeichert in:
Veröffentlicht in: | Semigroup forum 2020-10, Vol.101 (2), p.435-451 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
be a compact metric countable space, let
f
:
X
→
X
be a homeomorphism and let
E
(
X
,
f
) be its Ellis semigroup. Among other results we show that the following statements are equivalent: (1) (
X
,
f
) is equicontinuous, (2) (
X
,
f
) is distal and (3) every point is periodic. We use this result to give a direct proof of a theorem of Ellis saying that (
X
,
f
) is distal if, and only if,
E
(
X
,
f
) is a group. |
---|---|
ISSN: | 0037-1912 1432-2137 |
DOI: | 10.1007/s00233-020-10095-5 |