On eigenvalue problems related to the laplacian in a class of doubly connected domains
We study eigenvalue problems in some specific class of doubly connected domains. In particular, we prove the following. Let B 1 be an open ball in R n , n > 2 and B 0 be an open ball contained in B 1 . Then the first eigenvalue of the problem Δ u = 0 in B 1 \ B ¯ 0 , u = 0 on ∂ B 0 , ∂ u ∂ ν = τ...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2020-12, Vol.193 (4), p.879-899 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study eigenvalue problems in some specific class of doubly connected domains. In particular, we prove the following.
Let
B
1
be an open ball in
R
n
,
n
>
2
and
B
0
be an open ball contained in
B
1
. Then the first eigenvalue of the problem
Δ
u
=
0
in
B
1
\
B
¯
0
,
u
=
0
on
∂
B
0
,
∂
u
∂
ν
=
τ
u
on
∂
B
1
,
attains its maximum if and only if
B
0
and
B
1
are concentric. Here
ν
is the outward unit normal on
∂
B
1
and
τ
is a real number.
Let
B
0
⊂
M
be a geodesic ball of radius
r
centered at a point
p
∈
M
, where
M
denote either a non-compact rank-1 symmetric space
(
M
,
d
s
2
)
with curvature
-
4
≤
K
M
≤
-
1
or
M
=
R
m
. Let
D
⊂
M
be a domain of fixed volume which is geodesically symmetric with respect to the point
p
∈
M
such that
B
0
¯
⊂
D
. Then the first non-zero eigenvalue of
Δ
u
=
μ
u
in
D
\
B
¯
0
,
∂
u
∂
ν
=
0
on
∂
(
D
\
B
¯
0
)
,
attains its maximum if and only if
D
is a geodesic ball centered at
p
. Here
ν
represents the outward unit normal on
∂
(
D
\
B
¯
0
)
and
μ
is a real number. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-020-01466-9 |