Rotary dynamics of the rigid body electric dipole under the radiation reaction

Rotation of a permanently polarized rigid body under the radiation reaction torque is considered. Dynamics of the spinning top is derived from a balance condition of the angular momentum. It leads to the non-integrable nonlinear 2nd-order equations for angular velocities, and then to the reduced 1st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2020-09, Vol.74 (9), Article 189
1. Verfasser: Duviryak, Askold
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title The European physical journal. D, Atomic, molecular, and optical physics
container_volume 74
creator Duviryak, Askold
description Rotation of a permanently polarized rigid body under the radiation reaction torque is considered. Dynamics of the spinning top is derived from a balance condition of the angular momentum. It leads to the non-integrable nonlinear 2nd-order equations for angular velocities, and then to the reduced 1st-order Euler equations. The example of an axially symmetric top with the longitudinal dipole is solved exactly, with the transverse dipole analyzed qualitatively and numerically. Physical solutions describe the asymptotic power-law slowdown to stop or the exponential drift to a residual rotation; this depends on initial conditions and a shape of the top. Graphical abstract
doi_str_mv 10.1140/epjd/e2020-100605-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450420670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450420670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-58265389febf9543b53db2f8ac511e22ffb66a29b0a5b73ffdebbd4bcda836003</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBWwssQ6Mn02WqOIlVSAhWFt-FldtHOx00b8nIQh2rGYW597RHIQuCVwTwuHGdxt34ylQqAiABFGxIzQjnPFKwqI5_t0lnKKzUjYAQAWXM_T8mnqdD9gdWr2LtuAUcP_hcY7r6LBJ7oD91ts-R4td7NLW433rfJ4g7aLuY2px9tqOyzk6CXpb_MXPnKP3-7u35WO1enl4Wt6uKsso7StRUylY3QRvQiM4M4I5Q0OtrSDEUxqCkVLTxoAWZsFCcN4Yx411umYSgM3R1dTb5fS596VXm7TP7XBSUS6AU5CLkWITZXMqJfuguhx3w7uKgBrFqVGc-hanJnGKDSk-pcpAt2uf_7r_i30BAYdzwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450420670</pqid></control><display><type>article</type><title>Rotary dynamics of the rigid body electric dipole under the radiation reaction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Duviryak, Askold</creator><creatorcontrib>Duviryak, Askold</creatorcontrib><description>Rotation of a permanently polarized rigid body under the radiation reaction torque is considered. Dynamics of the spinning top is derived from a balance condition of the angular momentum. It leads to the non-integrable nonlinear 2nd-order equations for angular velocities, and then to the reduced 1st-order Euler equations. The example of an axially symmetric top with the longitudinal dipole is solved exactly, with the transverse dipole analyzed qualitatively and numerically. Physical solutions describe the asymptotic power-law slowdown to stop or the exponential drift to a residual rotation; this depends on initial conditions and a shape of the top. Graphical abstract</description><identifier>ISSN: 1434-6060</identifier><identifier>EISSN: 1434-6079</identifier><identifier>DOI: 10.1140/epjd/e2020-100605-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Angular momentum ; Angular velocity ; Applications of Nonlinear Dynamics and Chaos Theory ; Atomic ; Electric dipoles ; Euler-Lagrange equation ; Initial conditions ; Molecular ; Nonlinear equations ; Optical and Plasma Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Information Technology ; Quantum Physics ; Regular Article ; Rigid structures ; Rigid-body dynamics ; Rotation ; Spectroscopy/Spectrometry ; Spintronics</subject><ispartof>The European physical journal. D, Atomic, molecular, and optical physics, 2020-09, Vol.74 (9), Article 189</ispartof><rights>EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-58265389febf9543b53db2f8ac511e22ffb66a29b0a5b73ffdebbd4bcda836003</citedby><cites>FETCH-LOGICAL-c322t-58265389febf9543b53db2f8ac511e22ffb66a29b0a5b73ffdebbd4bcda836003</cites><orcidid>0000-0003-0786-4664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjd/e2020-100605-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjd/e2020-100605-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Duviryak, Askold</creatorcontrib><title>Rotary dynamics of the rigid body electric dipole under the radiation reaction</title><title>The European physical journal. D, Atomic, molecular, and optical physics</title><addtitle>Eur. Phys. J. D</addtitle><description>Rotation of a permanently polarized rigid body under the radiation reaction torque is considered. Dynamics of the spinning top is derived from a balance condition of the angular momentum. It leads to the non-integrable nonlinear 2nd-order equations for angular velocities, and then to the reduced 1st-order Euler equations. The example of an axially symmetric top with the longitudinal dipole is solved exactly, with the transverse dipole analyzed qualitatively and numerically. Physical solutions describe the asymptotic power-law slowdown to stop or the exponential drift to a residual rotation; this depends on initial conditions and a shape of the top. Graphical abstract</description><subject>Angular momentum</subject><subject>Angular velocity</subject><subject>Applications of Nonlinear Dynamics and Chaos Theory</subject><subject>Atomic</subject><subject>Electric dipoles</subject><subject>Euler-Lagrange equation</subject><subject>Initial conditions</subject><subject>Molecular</subject><subject>Nonlinear equations</subject><subject>Optical and Plasma Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Regular Article</subject><subject>Rigid structures</subject><subject>Rigid-body dynamics</subject><subject>Rotation</subject><subject>Spectroscopy/Spectrometry</subject><subject>Spintronics</subject><issn>1434-6060</issn><issn>1434-6079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBWwssQ6Mn02WqOIlVSAhWFt-FldtHOx00b8nIQh2rGYW597RHIQuCVwTwuHGdxt34ylQqAiABFGxIzQjnPFKwqI5_t0lnKKzUjYAQAWXM_T8mnqdD9gdWr2LtuAUcP_hcY7r6LBJ7oD91ts-R4td7NLW433rfJ4g7aLuY2px9tqOyzk6CXpb_MXPnKP3-7u35WO1enl4Wt6uKsso7StRUylY3QRvQiM4M4I5Q0OtrSDEUxqCkVLTxoAWZsFCcN4Yx411umYSgM3R1dTb5fS596VXm7TP7XBSUS6AU5CLkWITZXMqJfuguhx3w7uKgBrFqVGc-hanJnGKDSk-pcpAt2uf_7r_i30BAYdzwg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Duviryak, Askold</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0786-4664</orcidid></search><sort><creationdate>20200901</creationdate><title>Rotary dynamics of the rigid body electric dipole under the radiation reaction</title><author>Duviryak, Askold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-58265389febf9543b53db2f8ac511e22ffb66a29b0a5b73ffdebbd4bcda836003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angular momentum</topic><topic>Angular velocity</topic><topic>Applications of Nonlinear Dynamics and Chaos Theory</topic><topic>Atomic</topic><topic>Electric dipoles</topic><topic>Euler-Lagrange equation</topic><topic>Initial conditions</topic><topic>Molecular</topic><topic>Nonlinear equations</topic><topic>Optical and Plasma Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Regular Article</topic><topic>Rigid structures</topic><topic>Rigid-body dynamics</topic><topic>Rotation</topic><topic>Spectroscopy/Spectrometry</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duviryak, Askold</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duviryak, Askold</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotary dynamics of the rigid body electric dipole under the radiation reaction</atitle><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle><stitle>Eur. Phys. J. D</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>74</volume><issue>9</issue><artnum>189</artnum><issn>1434-6060</issn><eissn>1434-6079</eissn><abstract>Rotation of a permanently polarized rigid body under the radiation reaction torque is considered. Dynamics of the spinning top is derived from a balance condition of the angular momentum. It leads to the non-integrable nonlinear 2nd-order equations for angular velocities, and then to the reduced 1st-order Euler equations. The example of an axially symmetric top with the longitudinal dipole is solved exactly, with the transverse dipole analyzed qualitatively and numerically. Physical solutions describe the asymptotic power-law slowdown to stop or the exponential drift to a residual rotation; this depends on initial conditions and a shape of the top. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjd/e2020-100605-3</doi><orcidid>https://orcid.org/0000-0003-0786-4664</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1434-6060
ispartof The European physical journal. D, Atomic, molecular, and optical physics, 2020-09, Vol.74 (9), Article 189
issn 1434-6060
1434-6079
language eng
recordid cdi_proquest_journals_2450420670
source SpringerLink Journals - AutoHoldings
subjects Angular momentum
Angular velocity
Applications of Nonlinear Dynamics and Chaos Theory
Atomic
Electric dipoles
Euler-Lagrange equation
Initial conditions
Molecular
Nonlinear equations
Optical and Plasma Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Information Technology
Quantum Physics
Regular Article
Rigid structures
Rigid-body dynamics
Rotation
Spectroscopy/Spectrometry
Spintronics
title Rotary dynamics of the rigid body electric dipole under the radiation reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotary%20dynamics%20of%20the%20rigid%20body%20electric%20dipole%20under%20the%20radiation%20reaction&rft.jtitle=The%20European%20physical%20journal.%20D,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Duviryak,%20Askold&rft.date=2020-09-01&rft.volume=74&rft.issue=9&rft.artnum=189&rft.issn=1434-6060&rft.eissn=1434-6079&rft_id=info:doi/10.1140/epjd/e2020-100605-3&rft_dat=%3Cproquest_cross%3E2450420670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450420670&rft_id=info:pmid/&rfr_iscdi=true