Rotary dynamics of the rigid body electric dipole under the radiation reaction
Rotation of a permanently polarized rigid body under the radiation reaction torque is considered. Dynamics of the spinning top is derived from a balance condition of the angular momentum. It leads to the non-integrable nonlinear 2nd-order equations for angular velocities, and then to the reduced 1st...
Gespeichert in:
Veröffentlicht in: | The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2020-09, Vol.74 (9), Article 189 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | The European physical journal. D, Atomic, molecular, and optical physics |
container_volume | 74 |
creator | Duviryak, Askold |
description | Rotation of a permanently polarized rigid body under the radiation reaction torque is considered. Dynamics of the spinning top is derived from a balance condition of the angular momentum. It leads to the non-integrable nonlinear 2nd-order equations for angular velocities, and then to the reduced 1st-order Euler equations. The example of an axially symmetric top with the longitudinal dipole is solved exactly, with the transverse dipole analyzed qualitatively and numerically. Physical solutions describe the asymptotic power-law slowdown to stop or the exponential drift to a residual rotation; this depends on initial conditions and a shape of the top.
Graphical abstract |
doi_str_mv | 10.1140/epjd/e2020-100605-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2450420670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450420670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-58265389febf9543b53db2f8ac511e22ffb66a29b0a5b73ffdebbd4bcda836003</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBWwssQ6Mn02WqOIlVSAhWFt-FldtHOx00b8nIQh2rGYW597RHIQuCVwTwuHGdxt34ylQqAiABFGxIzQjnPFKwqI5_t0lnKKzUjYAQAWXM_T8mnqdD9gdWr2LtuAUcP_hcY7r6LBJ7oD91ts-R4td7NLW433rfJ4g7aLuY2px9tqOyzk6CXpb_MXPnKP3-7u35WO1enl4Wt6uKsso7StRUylY3QRvQiM4M4I5Q0OtrSDEUxqCkVLTxoAWZsFCcN4Yx411umYSgM3R1dTb5fS596VXm7TP7XBSUS6AU5CLkWITZXMqJfuguhx3w7uKgBrFqVGc-hanJnGKDSk-pcpAt2uf_7r_i30BAYdzwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2450420670</pqid></control><display><type>article</type><title>Rotary dynamics of the rigid body electric dipole under the radiation reaction</title><source>SpringerLink Journals - AutoHoldings</source><creator>Duviryak, Askold</creator><creatorcontrib>Duviryak, Askold</creatorcontrib><description>Rotation of a permanently polarized rigid body under the radiation reaction torque is considered. Dynamics of the spinning top is derived from a balance condition of the angular momentum. It leads to the non-integrable nonlinear 2nd-order equations for angular velocities, and then to the reduced 1st-order Euler equations. The example of an axially symmetric top with the longitudinal dipole is solved exactly, with the transverse dipole analyzed qualitatively and numerically. Physical solutions describe the asymptotic power-law slowdown to stop or the exponential drift to a residual rotation; this depends on initial conditions and a shape of the top.
Graphical abstract</description><identifier>ISSN: 1434-6060</identifier><identifier>EISSN: 1434-6079</identifier><identifier>DOI: 10.1140/epjd/e2020-100605-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Angular momentum ; Angular velocity ; Applications of Nonlinear Dynamics and Chaos Theory ; Atomic ; Electric dipoles ; Euler-Lagrange equation ; Initial conditions ; Molecular ; Nonlinear equations ; Optical and Plasma Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Information Technology ; Quantum Physics ; Regular Article ; Rigid structures ; Rigid-body dynamics ; Rotation ; Spectroscopy/Spectrometry ; Spintronics</subject><ispartof>The European physical journal. D, Atomic, molecular, and optical physics, 2020-09, Vol.74 (9), Article 189</ispartof><rights>EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>EDP Sciences / Società Italiana di Fisica / Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-58265389febf9543b53db2f8ac511e22ffb66a29b0a5b73ffdebbd4bcda836003</citedby><cites>FETCH-LOGICAL-c322t-58265389febf9543b53db2f8ac511e22ffb66a29b0a5b73ffdebbd4bcda836003</cites><orcidid>0000-0003-0786-4664</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjd/e2020-100605-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjd/e2020-100605-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Duviryak, Askold</creatorcontrib><title>Rotary dynamics of the rigid body electric dipole under the radiation reaction</title><title>The European physical journal. D, Atomic, molecular, and optical physics</title><addtitle>Eur. Phys. J. D</addtitle><description>Rotation of a permanently polarized rigid body under the radiation reaction torque is considered. Dynamics of the spinning top is derived from a balance condition of the angular momentum. It leads to the non-integrable nonlinear 2nd-order equations for angular velocities, and then to the reduced 1st-order Euler equations. The example of an axially symmetric top with the longitudinal dipole is solved exactly, with the transverse dipole analyzed qualitatively and numerically. Physical solutions describe the asymptotic power-law slowdown to stop or the exponential drift to a residual rotation; this depends on initial conditions and a shape of the top.
Graphical abstract</description><subject>Angular momentum</subject><subject>Angular velocity</subject><subject>Applications of Nonlinear Dynamics and Chaos Theory</subject><subject>Atomic</subject><subject>Electric dipoles</subject><subject>Euler-Lagrange equation</subject><subject>Initial conditions</subject><subject>Molecular</subject><subject>Nonlinear equations</subject><subject>Optical and Plasma Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Regular Article</subject><subject>Rigid structures</subject><subject>Rigid-body dynamics</subject><subject>Rotation</subject><subject>Spectroscopy/Spectrometry</subject><subject>Spintronics</subject><issn>1434-6060</issn><issn>1434-6079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBWwssQ6Mn02WqOIlVSAhWFt-FldtHOx00b8nIQh2rGYW597RHIQuCVwTwuHGdxt34ylQqAiABFGxIzQjnPFKwqI5_t0lnKKzUjYAQAWXM_T8mnqdD9gdWr2LtuAUcP_hcY7r6LBJ7oD91ts-R4td7NLW433rfJ4g7aLuY2px9tqOyzk6CXpb_MXPnKP3-7u35WO1enl4Wt6uKsso7StRUylY3QRvQiM4M4I5Q0OtrSDEUxqCkVLTxoAWZsFCcN4Yx411umYSgM3R1dTb5fS596VXm7TP7XBSUS6AU5CLkWITZXMqJfuguhx3w7uKgBrFqVGc-hanJnGKDSk-pcpAt2uf_7r_i30BAYdzwg</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Duviryak, Askold</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0786-4664</orcidid></search><sort><creationdate>20200901</creationdate><title>Rotary dynamics of the rigid body electric dipole under the radiation reaction</title><author>Duviryak, Askold</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-58265389febf9543b53db2f8ac511e22ffb66a29b0a5b73ffdebbd4bcda836003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Angular momentum</topic><topic>Angular velocity</topic><topic>Applications of Nonlinear Dynamics and Chaos Theory</topic><topic>Atomic</topic><topic>Electric dipoles</topic><topic>Euler-Lagrange equation</topic><topic>Initial conditions</topic><topic>Molecular</topic><topic>Nonlinear equations</topic><topic>Optical and Plasma Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Regular Article</topic><topic>Rigid structures</topic><topic>Rigid-body dynamics</topic><topic>Rotation</topic><topic>Spectroscopy/Spectrometry</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duviryak, Askold</creatorcontrib><collection>CrossRef</collection><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duviryak, Askold</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rotary dynamics of the rigid body electric dipole under the radiation reaction</atitle><jtitle>The European physical journal. D, Atomic, molecular, and optical physics</jtitle><stitle>Eur. Phys. J. D</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>74</volume><issue>9</issue><artnum>189</artnum><issn>1434-6060</issn><eissn>1434-6079</eissn><abstract>Rotation of a permanently polarized rigid body under the radiation reaction torque is considered. Dynamics of the spinning top is derived from a balance condition of the angular momentum. It leads to the non-integrable nonlinear 2nd-order equations for angular velocities, and then to the reduced 1st-order Euler equations. The example of an axially symmetric top with the longitudinal dipole is solved exactly, with the transverse dipole analyzed qualitatively and numerically. Physical solutions describe the asymptotic power-law slowdown to stop or the exponential drift to a residual rotation; this depends on initial conditions and a shape of the top.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjd/e2020-100605-3</doi><orcidid>https://orcid.org/0000-0003-0786-4664</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6060 |
ispartof | The European physical journal. D, Atomic, molecular, and optical physics, 2020-09, Vol.74 (9), Article 189 |
issn | 1434-6060 1434-6079 |
language | eng |
recordid | cdi_proquest_journals_2450420670 |
source | SpringerLink Journals - AutoHoldings |
subjects | Angular momentum Angular velocity Applications of Nonlinear Dynamics and Chaos Theory Atomic Electric dipoles Euler-Lagrange equation Initial conditions Molecular Nonlinear equations Optical and Plasma Physics Physical Chemistry Physics Physics and Astronomy Quantum Information Technology Quantum Physics Regular Article Rigid structures Rigid-body dynamics Rotation Spectroscopy/Spectrometry Spintronics |
title | Rotary dynamics of the rigid body electric dipole under the radiation reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rotary%20dynamics%20of%20the%20rigid%20body%20electric%20dipole%20under%20the%20radiation%20reaction&rft.jtitle=The%20European%20physical%20journal.%20D,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Duviryak,%20Askold&rft.date=2020-09-01&rft.volume=74&rft.issue=9&rft.artnum=189&rft.issn=1434-6060&rft.eissn=1434-6079&rft_id=info:doi/10.1140/epjd/e2020-100605-3&rft_dat=%3Cproquest_cross%3E2450420670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2450420670&rft_id=info:pmid/&rfr_iscdi=true |