Rotary dynamics of the rigid body electric dipole under the radiation reaction

Rotation of a permanently polarized rigid body under the radiation reaction torque is considered. Dynamics of the spinning top is derived from a balance condition of the angular momentum. It leads to the non-integrable nonlinear 2nd-order equations for angular velocities, and then to the reduced 1st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. D, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2020-09, Vol.74 (9), Article 189
1. Verfasser: Duviryak, Askold
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rotation of a permanently polarized rigid body under the radiation reaction torque is considered. Dynamics of the spinning top is derived from a balance condition of the angular momentum. It leads to the non-integrable nonlinear 2nd-order equations for angular velocities, and then to the reduced 1st-order Euler equations. The example of an axially symmetric top with the longitudinal dipole is solved exactly, with the transverse dipole analyzed qualitatively and numerically. Physical solutions describe the asymptotic power-law slowdown to stop or the exponential drift to a residual rotation; this depends on initial conditions and a shape of the top. Graphical abstract
ISSN:1434-6060
1434-6079
DOI:10.1140/epjd/e2020-100605-3